A New Engine Fault Diagnosis Method Based on Multi-Sensor Data Fusion

被引:36
|
作者
Jiang, Wen [1 ]
Hu, Weiwei [1 ]
Xie, Chunhe [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Shaanxi, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2017年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
multi-sensor data fusion; fatal diagnosis; Dempster-Shafer evidence theory; uncertainty; Gaussian distribution; DEMPSTER-SHAFER THEORY; DECISION-MAKING; RELIABILITY-ANALYSIS; D NUMBERS; INFORMATION; SETS; FRAMEWORK; SYSTEM;
D O I
10.3390/app7030280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fault diagnosis is an important research direction in modern industry. In this paper, a new fault diagnosis method based on multi-sensor data fusion is proposed, in which the Dempster-Shafer (D-S) evidence theory is employed to model the uncertainty. Firstly, Gaussian types of fault models and test models are established by observations of sensors. After the models are determined, the intersection area between test model and fault models is transformed into a set of BPAs (basic probability assignments), and a weighted average combination method is used to combine the obtained BPAs. Finally, through some given decision making rules, diagnostic results can be obtained. The proposed method in this paper is tested by the Iris data set and actual measurement data of the motor rotor, which verifies the effectiveness of the proposed method.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Rolling bearing fault diagnosis method based on multi-sensor two-stage fusion
    Liu, Cang
    Tong, Jinyu
    Zheng, Jinde
    Pan, Haiyang
    Bao, Jiahan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [32] An Adaptive Multi-Sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox
    Jing, Luyang
    Wang, Taiyong
    Zhao, Ming
    Wang, Peng
    SENSORS, 2017, 17 (02)
  • [33] Multi-sensor Information Fusion Method and Its Applications on Fault Detection of Diesel Engine
    He Guo
    Pan Xinglong
    Zhang Chaojie
    Ming Tingfeng
    Qin Jiufeng
    2011 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), VOLS 1-4, 2012, : 2551 - 2555
  • [34] Novel GIL mechanical fault diagnosis method based on multi-sensor data feature fusion and TDEAVOA-ELM
    Hu, Tianyu
    Ma, Hongzhong
    Duan, Dawei
    Ge, Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 119
  • [35] Multi-sensor information fusion method for vibration fault diagnosis of rolling bearing
    Jiao, Jing
    Yue, Jianhai
    Pei, Di
    5TH ASIA CONFERENCE ON MECHANICAL AND MATERIALS ENGINEERING (ACMME 2017), 2017, 241
  • [36] Fault diagnosis for hydraulic system on a modified multi-sensor information fusion method
    Dong, Zengshou
    Zhang, Xujing
    Zeng, Jianchao
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 18 (01) : 34 - 40
  • [37] Multi-sensor Fault Diagnosis of Aircraft Engine Based on Kalman Filter Group
    Hu, Jixiang
    Xiao, Lingfei
    PROCEEDINGS OF 2016 CHINESE INTELLIGENT SYSTEMS CONFERENCE, VOL I, 2016, 404 : 363 - 379
  • [38] Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory
    Basir, Otman
    Yuan, Xiaohong
    INFORMATION FUSION, 2007, 8 (04) : 379 - 386
  • [39] Research on multi-sensor information fusion algorithm with sensor fault diagnosis
    Xiao, Chun
    Fang, Zhengdong
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS - COMPUTING TECHNOLOGY, INTELLIGENT TECHNOLOGY, INDUSTRIAL INFORMATION INTEGRATION (ICIICII), 2016, : 132 - 135
  • [40] Rotating machinery fault diagnosis method based on multi-level fusion framework of multi-sensor information
    Xiao, Xiangqu
    Li, Chaoshun
    He, Hongxiang
    Huang, Jie
    Yu, Tian
    INFORMATION FUSION, 2025, 113