A New Engine Fault Diagnosis Method Based on Multi-Sensor Data Fusion

被引:36
|
作者
Jiang, Wen [1 ]
Hu, Weiwei [1 ]
Xie, Chunhe [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Shaanxi, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2017年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
multi-sensor data fusion; fatal diagnosis; Dempster-Shafer evidence theory; uncertainty; Gaussian distribution; DEMPSTER-SHAFER THEORY; DECISION-MAKING; RELIABILITY-ANALYSIS; D NUMBERS; INFORMATION; SETS; FRAMEWORK; SYSTEM;
D O I
10.3390/app7030280
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fault diagnosis is an important research direction in modern industry. In this paper, a new fault diagnosis method based on multi-sensor data fusion is proposed, in which the Dempster-Shafer (D-S) evidence theory is employed to model the uncertainty. Firstly, Gaussian types of fault models and test models are established by observations of sensors. After the models are determined, the intersection area between test model and fault models is transformed into a set of BPAs (basic probability assignments), and a weighted average combination method is used to combine the obtained BPAs. Finally, through some given decision making rules, diagnostic results can be obtained. The proposed method in this paper is tested by the Iris data set and actual measurement data of the motor rotor, which verifies the effectiveness of the proposed method.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fault diagnosis for spark ignition engine based on multi-sensor data fusion
    Tan, DR
    Yan, XP
    Gao, S
    Liu, ZL
    2005 IEEE International Conference on Vehicular Electronics and Safety Proceedings, 2005, : 311 - 314
  • [2] Weighted belief function of sensor data fusion in engine fault diagnosis
    Zhang, Hepeng
    Deng, Yong
    SOFT COMPUTING, 2020, 24 (03) : 2329 - 2339
  • [3] A new method of gear fault diagnosis in strong noise based on multi-sensor information fusion
    Cheng, Gang
    Chen, Xi-hui
    Shan, Xian-lei
    Liu, Hou-guang
    Zhou, Chang-fei
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (06) : 1504 - 1515
  • [4] Fault Diagnosis of Brake Train Based on Multi-Sensor Data Fusion
    Jin, Yongze
    Xie, Guo
    Li, Yankai
    Zhang, Xiaohui
    Han, Ning
    Shangguan, Anqi
    Chen, Wenbin
    SENSORS, 2021, 21 (13)
  • [5] Fault Diagnosis of Induction Motor based on Multi-sensor Data Fusion
    Li Shu-ying
    Tian Mu-qin
    Xue Lei
    MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II, 2014, 651-653 : 729 - +
  • [6] Engine fault diagnosis based on sensor data fusion using evidence theory
    Song, Moxian
    Jiang, Wen
    ADVANCES IN MECHANICAL ENGINEERING, 2016, 8 (10): : 1 - 9
  • [7] Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes
    He, Jun
    Yang, Shixi
    Papatheou, Evangelos
    Xiong, Xin
    Wan, Haibo
    Gu, Xiwen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2019, 233 (13) : 4764 - 4775
  • [8] Study on the application of multi-sensor data fusion in gearbox fault diagnosis
    Xie Zhijiang
    He Pan
    Proceedings of the International Conference on Mechanical Transmissions, Vols 1 and 2, 2006, : 1300 - 1303
  • [9] Evidence combination based on prospect theory for multi-sensor data fusion
    Xiao, Fuyuan
    ISA TRANSACTIONS, 2020, 106 : 253 - 261
  • [10] Multi-Sensor data fusion in intelligent fault diagnosis of rotating machines: A comprehensive review
    Kibrete, Fasikaw
    Woldemichael, Dereje Engida
    Gebremedhen, Hailu Shimels
    MEASUREMENT, 2024, 232