Using traffic flow characteristics to predict real-time conflict risk: A novel method for trajectory data analysis

被引:67
|
作者
Yuan, Chen [1 ,2 ]
Li, Ye [1 ]
Huang, Helai [1 ]
Wang, Shiqi [2 ]
Sun, Zhenhao [2 ]
Li, Yan [3 ]
机构
[1] Cent South Univ, Sch Traff & Transportat Engn, Changsha 410075, Hunan, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] Hunan Xiangjiang Intelligent Technol Innovat Ctr C, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Real-time conflict risk; Heterogeneity; Random parameter; Machine learning; CRASH RISK; STATISTICAL-ANALYSIS; ANALYTIC METHODS; SAFETY ANALYSIS; INJURY; SPEED; FREQUENCY; MODELS; TRANSFERABILITY; HETEROGENEITY;
D O I
10.1016/j.amar.2022.100217
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The real-time conflict prediction model using traffic flow characteristics is much less studied than the crash-based model. This study aims at exploring the relationship between conflicts and traffic flow features with the consideration of heterogeneity and developing predictive models to identify conflict-prone conditions in a real-time manner. The high resolution trajectory data from the HighD dataset is used as empirical data. A novel method with the virtual detector approach for traffic feature extraction and a two-step framework is proposed for the trajectory data analysis. The framework consists of an exploratory study by random parameter logit model with heterogeneity in means and variances and a comparative study on several machine learning methods, including eXtreme Gradient Boosting (Boosting), Random Forest (Bagging), Support Vector Machine (Single-classifier), and Multilayer-Perceptron (Deep neural network). Results indicate that (1) traffic flow characteristics have significant impacts on the probability of conflict occurrence; (2) the statistical model considering mean heterogeneity outperforms the counterpart and lane differences variables are found to significantly impact the means of random parameters for both lane variables and lane differences variables; (3) eXtreme Gradient Boosting trained on an under-sampled dataset turns out to be the best model with the highest AUC of 0.871 and precision of 0.867, showing that re-sampling techniques can significantly improve the model performance. The proposed model is found to be sensitive to the conflict threshold. Sensitivity analysis on feature selection further confirms that the conflict risk prediction should consider both subject lane features and lane difference features, which verifies the consistency with exploratory analysis based on the statistical model. The consistency between statistical models and machine learning methods improves the interpretability of results for the latter one. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Traffic conflict assessment using macroscopic traffic flow variables: A novel framework for real-time applications
    Gore, Ninad
    Chauhan, Ritvik
    Easa, Said
    Arkatkar, Shriniwas
    ACCIDENT ANALYSIS AND PREVENTION, 2023, 185
  • [2] Enhancing real-time conflict identification using trajectory data: Exploring the impact of interactions among traffic flow state variables
    Wu, Dan
    Wu, Gaoming
    TRAFFIC INJURY PREVENTION, 2025, 26 (02) : 182 - 190
  • [3] Real-Time Traffic Flow Forecasting Using Spectral Analysis
    Tchrakian, Tigran T.
    Basu, Biswajit
    O'Mahony, Margaret
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (02) : 519 - 526
  • [4] Crash risk analysis during fog conditions using real-time traffic data
    Wu, Yina
    Abdel-Aty, Mohamed
    Lee, Jaeyoung
    ACCIDENT ANALYSIS AND PREVENTION, 2018, 114 : 4 - 11
  • [5] A high-resolution trajectory data driven method for real-time evaluation of traffic safety
    Hu, Yuping
    Li, Ye
    Huang, Helai
    Lee, Jaeyoung
    Yuan, Chen
    Zou, Guoqing
    ACCIDENT ANALYSIS AND PREVENTION, 2022, 165
  • [6] Traffic flow characteristics and traffic conflict analysis in the downstream area of expressway toll station based on vehicle trajectory data
    Ren, Qiaoqiao
    He, Jie
    Liu, Ziyang
    Xu, Min
    ASIAN TRANSPORT STUDIES, 2024, 10
  • [7] Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis
    Kashinath, Shafiza Ariffin
    Mostafa, Salama A.
    Mustapha, Aida
    Mahdin, Hairulnizam
    Lim, David
    Mahmoud, Moamin A.
    Mohammed, Mazin Abed
    Al-Rimy, Bander Ali Saleh
    Fudzee, Mohd Farhan Md
    Yang, Tan Jhon
    IEEE ACCESS, 2021, 9 : 51258 - 51276
  • [8] Modeling conflict risk with real-time traffic data for road safety assessment: a copula-based joint approach
    Hu, Yuping
    Li, Ye
    Yuan, Chen
    Huang, Helai
    TRANSPORTATION SAFETY AND ENVIRONMENT, 2022, 4 (03)
  • [9] IoT and ML-based AQI Estimation using Real-time Traffic Data
    Nilesh, Nitin
    Narang, Jayati
    Parmar, Ayu
    Chaudhari, Sachin
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,
  • [10] A Hybrid Model for Real-Time Traffic Prediction with Augmented Historical Data using Traffic Simulation
    Tak, Hye-Young
    Kim, Yeeun
    Kim, Sunghoon
    Yeo, Hwasoo
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 839 - 844