The structural basis for the transition from Ras-GTP to Ras-GDP

被引:137
作者
Hall, BE
Bar-Sagi, D
Nassar, N [1 ]
机构
[1] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Grad Program Mol & Cellular Pharmacol, Dept Mol Genet, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Microbiol, Stony Brook, NY 11794 USA
关键词
D O I
10.1073/pnas.192453199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The conformational changes in Ras that accompany the hydrolysis of GTP are critical to its function as a molecular switch in signaling pathways. Understanding how GTP is hydrolyzed by revealing the sequence of intermediary structures in the reaction is essential for understanding Ras signaling. Until now, no structure of an intermediate in GTP hydrolysis has been experimentally determined for Ras alone. We have solved the crystal structure of the Ala-59 to Gly mutant of Ras, (RasA59G), bound to guanosine 5'-imidotriphosphate or GDP to 1.7-Angstrom resolution. In the guanosine 5'-imidotriphosphate-bound form, this mutant adopts a conformation that is intermediate between the GTP- and GDP-bound forms of wild-type Ras and that is similar to what has been predicted by molecular dynamics simulation [Ma, J. P. & Karplus, M. (1997) Proc. Natl. Acad. Sci. USA 94,11905-11910]. This conformation is stabilized by direct and water-mediated interactions between the switch 1 and switch 2 regions and is characterized by an increase in the binding affinity for GTP. We propose that the structural changes promoted by the Ala-59 to Gly mutation exhibit a discrete conformational state assumed by wild-type Ras during GTP hydrolysis.
引用
收藏
页码:12138 / 12142
页数:5
相关论文
共 26 条
[1]   RAS GENES [J].
BARBACID, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :779-827
[2]   Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo [J].
Block, C ;
Janknecht, R ;
Herrmann, C ;
Nassar, N ;
Wittinghofer, A .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (03) :244-251
[3]   The structural basis of the activation of Ras by Sos [J].
Boriack-Sjodin, PA ;
Margarit, SM ;
Bar-Sagi, D ;
Kuriyan, J .
NATURE, 1998, 394 (6691) :337-343
[4]  
BOS JL, 1989, CANCER RES, V49, P4682
[5]   THE GTPASE SUPERFAMILY - A CONSERVED SWITCH FOR DIVERSE CELL FUNCTIONS [J].
BOURNE, HR ;
SANDERS, DA ;
MCCORMICK, F .
NATURE, 1990, 348 (6297) :125-132
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]   Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed guanine nucleotide exchange [J].
Hall, BE ;
Yang, SS ;
Boriack-Sjodin, PA ;
Kuriyan, J ;
Bar-Sagi, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27629-27637
[8]   KINETICS OF INTERACTION OF NUCLEOTIDES WITH NUCLEOTIDE-FREE H-RAS P21 [J].
JOHN, J ;
SOHMEN, R ;
FEUERSTEIN, J ;
LINKE, R ;
WITTINGHOFER, A ;
GOODY, RS .
BIOCHEMISTRY, 1990, 29 (25) :6058-6065
[9]   MOLSCRIPT - A PROGRAM TO PRODUCE BOTH DETAILED AND SCHEMATIC PLOTS OF PROTEIN STRUCTURES [J].
KRAULIS, PJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :946-950
[10]   PROCHECK - A PROGRAM TO CHECK THE STEREOCHEMICAL QUALITY OF PROTEIN STRUCTURES [J].
LASKOWSKI, RA ;
MACARTHUR, MW ;
MOSS, DS ;
THORNTON, JM .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1993, 26 :283-291