On idempotent states on quantum groups

被引:33
作者
Franz, Uwe [2 ]
Skalski, Adam [1 ,3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster, England
[2] Univ Franche Comte, Dept Math Besancon, F-25030 Besancon, France
[3] Univ Lodz, Dept Math, PL-90238 Lodz, Poland
基金
英国工程与自然科学研究理事会;
关键词
Quantum group; Idempotent state; Quantum hypergroup; HAAR MEASURE; ALGEBRAS;
D O I
10.1016/j.jalgebra.2009.05.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Idempotent states on a compact quantum group are shown to yield group-like projections in the multiplier algebra of the dual discrete quantum group. This allows to deduce that every idempotent state on a finite quantum group arises in a canonical way as the Haar state on a finite quantum hypergroup. A natural order structure on the set of idempotent states is also studied and some examples discussed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1774 / 1802
页数:29
相关论文
共 21 条
[1]  
[Anonymous], 1995, SYMETRIES QUANTIQUES
[2]  
Chapovsky YA, 1999, J OPERAT THEOR, V41, P261
[3]  
DELVAUX L, MATHRA0606466V3
[4]  
FRANZ U, ARXIVMATH09032363
[5]  
Franz U., 2008, C MATH, V113, P13
[6]  
HEWITT E, 1970, ABSTR HARM AN, V2
[7]  
Heyer H., 1977, Probability Measures on Locally Compact Groups
[8]  
Kawada Yukiyosi, 1940, Proc. Phys. Math. Soc. Jpn. 3rd Ser., V22, P977
[9]   The analytic structure of algebraic quantum groups [J].
Kustermans, J .
JOURNAL OF ALGEBRA, 2003, 259 (02) :415-450
[10]   Groups with compact open subgroups and multiplier Hopf*-algebras [J].
Landstad, Magnus B. ;
Van Daele, A. .
EXPOSITIONES MATHEMATICAE, 2008, 26 (03) :197-217