Intersection numbers in quasi-Hamiltonian reduced spaces

被引:0
作者
Jeffrey, Lisa [1 ]
Song, Joon-Hyeok [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Jeffrey and Kirwan [15] gave expressions for intersection pairings on the reduced space of a particular Hamiltonian G-space in terms of iterated residues. The definition of quasi-Hamiltonian spaces was introduced in [1]. In [2] a localization formula for equivariant de Rham cohomolog of a compact quasi-Hamiltonian G-space was proved. In this paper we prove a residue formula for intersection pairings of reduced spaces of quasi-Hamiltonian G-spaces, by constructing a corresponding Hamiltonian G-space. Our formula is a close analogue of the result in [2]. In this article we rely heavily on the methods of [15]; for the general class of compact Lie groups G treated in [2], we rely on results of Szenes and Brion-Vergne concerning diagonal bases.
引用
收藏
页码:837 / 865
页数:29
相关论文
共 22 条
[1]   Group-valued equivariant localization [J].
Alekseev, A ;
Meinrenken, E ;
Woodward, C .
INVENTIONES MATHEMATICAE, 2000, 140 (02) :327-350
[2]   Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces [J].
Alekseev, A ;
Meinrenken, E ;
Woodward, C .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (01) :1-31
[3]  
Alekseev A, 1998, J DIFFER GEOM, V48, P445
[4]  
Alekseev Anton, 2001, J SYMPLECT GEOM, V1, P1
[5]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[6]   ZEROS IN A VECTOR FIELD AND EQUIVARIANT CHARACTERISTIC CLASSES [J].
BERLINE, N ;
VERGNE, M .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) :539-549
[7]  
Berline N, 1992, HEAT KERNELS DIRAC O
[8]   Arrangement of hyperplanes. I: Rational functions and Jeffrey-Kirwan residue [J].
Brion, M ;
Vergne, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (05) :715-741
[9]  
Brion M, 2000, DUKE MATH J, V103, P279
[10]  
DUISTERMAAT JJ, 2002, LIE GROUPS