The nonlinear Dirac equation in Bose-Einstein condensates: Foundation and symmetries

被引:89
作者
Haddad, L. H. [1 ]
Carr, L. D. [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
Nonlinear Dirac equation; Nonlinear Schrodinger equation; Bose-Einstein condensates; Ultra-cold atoms; Optical lattices; Graphene; GRAPHENE; SOLITONS; FERMIONS; STATES;
D O I
10.1016/j.physd.2009.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that Bose-Einstein condensates in a honeycomb optical lattice can he described by a nonlinear Dirac equation in the long wavelength, mean field limit. Unlike nonlinear Dirac equations posited by particle theorists, which are designed to preserve the principle of relativity, i.e., Poincare covariance, the nonlinear Dirac equation for Bose-Einstein condensates breaks this symmetry. We present a rigorous derivation of the nonlinear Dirac equation from first principles. We provide a thorough discussion Of all symmetries broken and maintained. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1413 / 1421
页数:9
相关论文
共 51 条
[1]   Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures [J].
Akozbek, N ;
John, S .
PHYSICAL REVIEW E, 1998, 57 (02) :2287-2319
[2]  
[Anonymous], THESIS U MARYLAND
[3]  
BERGMAN DL, 2008, ARXIV08060379, P22105
[4]  
Bjorken J. D., 1964, International series in pure and applied physics
[5]   Wannier states and Bose-Hubbard parameters for 2D optical lattices [J].
Blakie, PB ;
Clark, CW .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2004, 37 (07) :1391-1404
[6]  
Castin Y, 2001, LES HOUCH S, V72, P5
[7]   EXISTENCE OF LOCALIZED SOLUTIONS FOR A CLASSICAL NONLINEAR DIRAC FIELD [J].
CAZENAVE, T ;
VAZQUEZ, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (01) :35-47
[8]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[9]   STATIONARY STATES OF THE NONLINEAR DIRAC-EQUATION - A VARIATIONAL APPROACH [J].
ESTEBAN, MJ ;
SERE, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (02) :323-350
[10]  
Esteban MJ, 2002, DISCRETE CONT DYN S, V8, P381