Considering anatomical prior information for low-dose CT image enhancement using attribute-augmented Wasserstein generative adversarial networks

被引:29
作者
Huang, Zhenxing [1 ,2 ,3 ,4 ,5 ,6 ]
Liu, Xinfeng [6 ]
Wang, Rongpin [6 ]
Chen, Jincai [1 ,4 ,5 ]
Lu, Ping [1 ,4 ,5 ]
Zhang, Qiyang [2 ]
Jiang, Changhui [2 ,3 ]
Yang, Yongfeng [2 ,3 ]
Liu, Xin [2 ,3 ]
Zheng, Hairong [2 ,3 ]
Liang, Dong [2 ,3 ]
Hu, Zhanli [2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, Key Lab Hlth Informat, Shenzhen 518055, Peoples R China
[4] Huazhong Univ Sci & Technolog, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China
[5] Minist Educ China, Engn Res Ctr Data Storage Syst & Technol, Key Lab Informat Storage Syst, Wuhan 430074, Peoples R China
[6] Guizhou Prov Peoples Hosp, Dept Radiol, Guiyang 550002, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-dose CT; Image enhancement; Anatomical prior information; Attribute augmentation; Weight prediction; NOISE-REDUCTION; RECONSTRUCTION; TOMOGRAPHY; ATTENTION;
D O I
10.1016/j.neucom.2020.10.077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, many deep learning (DL)-based low-dose CT image postprocessing technologies fail to consider the anatomical differences in training data among different human body sites, such as the cranium, lung and pelvis. In addition, we can observe evident anatomical similarities at the same site among individuals. However, these anatomical differences and similarities are ignored in the current DL-based methods during the network training process. In this paper, we propose a deep network trained by introducing anatomical site labels, termed attributes for training data. Then, the network can adaptively learn to obtain the optimal weight for each anatomical site. By doing so, the proposed network can take full advantage of anatomical prior information to estimate high-resolution CT images. Furthermore, we employ a Wasserstein generative adversarial network (WGAN) augmented with attributes to preserve more structural details. Compared with the traditional networks that do not consider the anatomical prior and whose weights are consequently the same for each anatomical site, the proposed network achieves better performance by adaptively adjusting to the anatomical prior information. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 47 条
[1]  
[Anonymous], 2014, MED PHYS
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]   Convolutional Sparse Coding for Compressed Sensing CT Reconstruction [J].
Bao, Peng ;
Xia, Wenjun ;
Yang, Kang ;
Chen, Weiyan ;
Chen, Mianyi ;
Xi, Yan ;
Niu, Shanzhou ;
Zhou, Jiliu ;
Zhang, He ;
Sun, Huaiqiang ;
Wang, Zhangyang ;
Zhang, Yi .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2607-2619
[4]   Current concepts - Computed tomography - An increasing source of radiation exposure [J].
Brenner, David J. ;
Hall, Eric J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 357 (22) :2277-2284
[5]   Cine Cone Beam CT Reconstruction Using Low-Rank Matrix Factorization: Algorithm and a Proof-of-Principle Study [J].
Cai, Jian-Feng ;
Jia, Xun ;
Gao, Hao ;
Jiang, Steve B. ;
Shen, Zuowei ;
Zhao, Hongkai .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (08) :1581-1591
[6]   LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT [J].
Chen, Hu ;
Zhang, Yi ;
Chen, Yunjin ;
Zhang, Junfeng ;
Zhang, Weihua ;
Sun, Huaiqiang ;
Lv, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1333-1347
[7]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[8]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[9]   Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing [J].
Chen, Yang ;
Yin, Xindao ;
Shi, Luyao ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16) :5803-5820
[10]   Learning-Based Artifact Removal via Image Decomposition for Low-Dose CT Image Processing [J].
Cui, Xue-Ying ;
Gui, Zhi-Guo ;
Zhang, Quan ;
Shangguan, Hong ;
Wang, An-Hong .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (03) :1860-1873