Edge and Surface Plasmons in Graphene Nanoribbons

被引:167
作者
Fei, Z. [1 ,2 ]
Goldflam, M. D. [1 ]
Wu, J-S. [1 ]
Dai, S. [1 ]
Wagner, M. [1 ]
McLeod, A. S. [1 ]
Liu, M. K. [3 ]
Post, K. W. [1 ]
Zhu, S. [4 ]
Janssen, G. C. A. M. [4 ]
Fogler, M. M. [1 ]
Basov, D. N. [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11790 USA
[4] Delft Univ Technol, Dept Precis & Microsyst Engn, NL-2628 CD Delft, Netherlands
关键词
Graphene nanoribbons; CVD graphene; nano-infrared imaging; plasmon-phonon coupling; edge plasmons; TERAHERTZ;
D O I
10.1021/acs.nanolett.5b03834
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on nano-infrared (IR) imaging studies of confined plasmon modes inside patterned graphene nanoribbons (GNRs) fabricated with high-quality chemical-vapordeposited (CVD) graphene on Al2O3 substrates. The confined geometry of these ribbons leads to distinct mode patterns and strong field enhancement, both of which evolve systematically with the ribbon width. In addition, spectroscopic nanoimaging in the mid-infrared range 850-1450 cm(-1) allowed us to evaluate the effect of the substrate phonons on the plasmon damping. Furthermore, we observed edge plasmons: peculiar one-dimensional modes propagating strictly along the edges of our patterned graphene nanostructures.
引用
收藏
页码:8271 / 8276
页数:6
相关论文
共 39 条
[1]   OBSERVATION OF 2-DIMENSIONAL PLASMON IN SILICON INVERSION LAYERS [J].
ALLEN, SJ ;
TSUI, DC ;
LOGAN, RA .
PHYSICAL REVIEW LETTERS, 1977, 38 (17) :980-983
[2]   Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns [J].
Alonso-Gonzalez, P. ;
Nikitin, A. Y. ;
Golmar, F. ;
Centeno, A. ;
Pesquera, A. ;
Velez, S. ;
Chen, J. ;
Navickaite, G. ;
Koppens, F. ;
Zurutuza, A. ;
Casanova, F. ;
Hueso, L. E. ;
Hillenbrand, R. .
SCIENCE, 2014, 344 (6190) :1369-1373
[3]   Graphene-based long-wave infrared TM surface plasmon modulator [J].
Andersen, David R. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (04) :818-823
[4]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[5]   Colloquium: Graphene spectroscopy [J].
Basov, D. N. ;
Fogler, M. M. ;
Lanzara, A. ;
Wang, Feng ;
Zhang, Yuanbo .
REVIEWS OF MODERN PHYSICS, 2014, 86 (03) :959-994
[6]   Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators [J].
Brar, Victor W. ;
Jang, Min Seok ;
Sherrott, Michelle ;
Lopez, Josue J. ;
Atwater, Harry A. .
NANO LETTERS, 2013, 13 (06) :2541-2547
[7]   Ballistic transport in graphene grown by chemical vapor deposition [J].
Calado, V. E. ;
Zhu, Shou-En ;
Goswami, S. ;
Xu, Q. ;
Watanabe, K. ;
Taniguchi, T. ;
Janssen, G. C. A. M. ;
Vandersypen, L. M. K. .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[8]   Optical nano-imaging of gate-tunable graphene plasmons [J].
Chen, Jianing ;
Badioli, Michela ;
Alonso-Gonzalez, Pablo ;
Thongrattanasiri, Sukosin ;
Huth, Florian ;
Osmond, Johann ;
Spasenovic, Marko ;
Centeno, Alba ;
Pesquera, Amaia ;
Godignon, Philippe ;
Zurutuza Elorza, Amaia ;
Camara, Nicolas ;
Javier Garcia de Abajo, F. ;
Hillenbrand, Rainer ;
Koppens, Frank H. L. .
NATURE, 2012, 487 (7405) :77-81
[9]   Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene [J].
Crassee, I. ;
Orlita, M. ;
Potemski, M. ;
Walter, A. L. ;
Ostler, M. ;
Seyller, Th. ;
Gaponenko, I. ;
Chen, J. ;
Kuzmenko, A. B. .
NANO LETTERS, 2012, 12 (05) :2470-2474
[10]  
Dai S, 2015, NAT NANOTECHNOL, V10, P682, DOI [10.1038/NNANO.2015.131, 10.1038/nnano.2015.131]