Rational Structure-Based Design of Bright GFP-Based Complexes with Tunable Dimerization

被引:15
作者
Eshaghi, Majid [1 ]
Sun, Guangyu [2 ,3 ,4 ]
Grueter, Andreas [5 ]
Lim, Chiew Ling [1 ]
Chee, Yuemin Celina [1 ]
Jung, Gregor [5 ]
Jauch, Ralf [6 ]
Wohland, Thorsten [2 ,3 ,4 ]
Chen, Swaine L. [1 ,7 ]
机构
[1] Natl Univ Singapore, Dept Med, Yong Loo Lin Sch Med, Singapore 119074, Singapore
[2] Natl Univ Singapore, Dept Chem, Singapore 117557, Singapore
[3] Natl Univ Singapore, Dept Biol Sci, Singapore 117557, Singapore
[4] Natl Univ Singapore, Ctr Bioimaging Sci, Singapore 117557, Singapore
[5] Univ Saarland, D-66123 Saarbrucken, Germany
[6] Chinese Acad Sci, Guangzhou Inst Biomed & Hlth, Guangzhou 510530, Guangdong, Peoples R China
[7] Genome Inst Singapore, Infect Dis Grp, Singapore 138672, Singapore
基金
中国国家自然科学基金; 美国国家卫生研究院; 新加坡国家研究基金会;
关键词
dimerization; fluorescent probes; green fluorescent protein; protein engineering; single-molecule studies; GREEN-FLUORESCENT PROTEIN; ANTIBODIES; CELLS;
D O I
10.1002/anie.201506686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fluorescent proteins are transformative tools; thus, any brightness increase is a welcome improvement. We invented the "vGFP strategy" based on structural analysis of GFP bound to a single-domain antibody, predicting tunable dimerization, enhanced brightness (ca. 50%), and improved pH resistance. We verified all of these predictions using biochemistry, crystallography, and single-molecule studies. We applied the vsfGFP proteins in three diverse scenarios: single-step immunofluorescence in vitro (3 x brighter due to dimerization); expression in bacteria and human cells in vivo (1.5 x brighter); and protein fusions showing better pH resistance in human cells in vivo. The vGFP strategy thus allows upgrading of existing applications, is applicable to other fluorescent proteins, and suggests a method for tuning dimerization of arbitrary proteins and optimizing protein properties in general.
引用
收藏
页码:13952 / 13956
页数:5
相关论文
共 24 条
  • [1] Branden C., 1991, Introduction to protein structure, V2
  • [2] Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein
    Cabantous, S
    Terwilliger, TC
    Waldo, GS
    [J]. NATURE BIOTECHNOLOGY, 2005, 23 (01) : 102 - 107
  • [3] Green fluorescent antibodies:: novel in vitro tools
    Casey, JL
    Coley, AM
    Tilley, LM
    Foley, M
    [J]. PROTEIN ENGINEERING, 2000, 13 (06): : 445 - 452
  • [4] Therapeutic antibodies: successes, limitations and hopes for the future
    Chames, Patrick
    Van Regenmortel, Marc
    Weiss, Etienne
    Baty, Daniel
    [J]. BRITISH JOURNAL OF PHARMACOLOGY, 2009, 157 (02) : 220 - 233
  • [5] Demaurex N, 2002, NEWS PHYSIOL SCI, V17, P1
  • [6] Eshaghi M., 2015, PATHOGEN IN PRESS
  • [7] Fluobodies: green fluorescent single-chain Fv fusion proteins
    Griep, RA
    van Twisk, C
    van der Wolf, JM
    Schots, A
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 1999, 230 (1-2) : 121 - 130
  • [8] Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy
    Haupts, U
    Maiti, S
    Schwille, P
    Webb, WW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) : 13573 - 13578
  • [9] LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    Kabeya, Y
    Mizushima, N
    Uero, T
    Yamamoto, A
    Kirisako, T
    Noda, T
    Kominami, E
    Ohsumi, Y
    Yoshimori, T
    [J]. EMBO JOURNAL, 2000, 19 (21) : 5720 - 5728
  • [10] Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3
    Kimura, Shunsuke
    Noda, Takeshi
    Yoshimori, Tamotsu
    [J]. AUTOPHAGY, 2007, 3 (05) : 452 - 460