Rational Structure-Based Design of Bright GFP-Based Complexes with Tunable Dimerization

被引:16
作者
Eshaghi, Majid [1 ]
Sun, Guangyu [2 ,3 ,4 ]
Grueter, Andreas [5 ]
Lim, Chiew Ling [1 ]
Chee, Yuemin Celina [1 ]
Jung, Gregor [5 ]
Jauch, Ralf [6 ]
Wohland, Thorsten [2 ,3 ,4 ]
Chen, Swaine L. [1 ,7 ]
机构
[1] Natl Univ Singapore, Dept Med, Yong Loo Lin Sch Med, Singapore 119074, Singapore
[2] Natl Univ Singapore, Dept Chem, Singapore 117557, Singapore
[3] Natl Univ Singapore, Dept Biol Sci, Singapore 117557, Singapore
[4] Natl Univ Singapore, Ctr Bioimaging Sci, Singapore 117557, Singapore
[5] Univ Saarland, D-66123 Saarbrucken, Germany
[6] Chinese Acad Sci, Guangzhou Inst Biomed & Hlth, Guangzhou 510530, Guangdong, Peoples R China
[7] Genome Inst Singapore, Infect Dis Grp, Singapore 138672, Singapore
基金
新加坡国家研究基金会; 中国国家自然科学基金; 美国国家卫生研究院;
关键词
dimerization; fluorescent probes; green fluorescent protein; protein engineering; single-molecule studies; GREEN-FLUORESCENT PROTEIN; ANTIBODIES; CELLS;
D O I
10.1002/anie.201506686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fluorescent proteins are transformative tools; thus, any brightness increase is a welcome improvement. We invented the "vGFP strategy" based on structural analysis of GFP bound to a single-domain antibody, predicting tunable dimerization, enhanced brightness (ca. 50%), and improved pH resistance. We verified all of these predictions using biochemistry, crystallography, and single-molecule studies. We applied the vsfGFP proteins in three diverse scenarios: single-step immunofluorescence in vitro (3 x brighter due to dimerization); expression in bacteria and human cells in vivo (1.5 x brighter); and protein fusions showing better pH resistance in human cells in vivo. The vGFP strategy thus allows upgrading of existing applications, is applicable to other fluorescent proteins, and suggests a method for tuning dimerization of arbitrary proteins and optimizing protein properties in general.
引用
收藏
页码:13952 / 13956
页数:5
相关论文
共 24 条
[1]  
Branden C., 1991, Introduction to protein structure, V2
[2]   Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein [J].
Cabantous, S ;
Terwilliger, TC ;
Waldo, GS .
NATURE BIOTECHNOLOGY, 2005, 23 (01) :102-107
[3]   Green fluorescent antibodies:: novel in vitro tools [J].
Casey, JL ;
Coley, AM ;
Tilley, LM ;
Foley, M .
PROTEIN ENGINEERING, 2000, 13 (06) :445-452
[4]   Therapeutic antibodies: successes, limitations and hopes for the future [J].
Chames, Patrick ;
Van Regenmortel, Marc ;
Weiss, Etienne ;
Baty, Daniel .
BRITISH JOURNAL OF PHARMACOLOGY, 2009, 157 (02) :220-233
[5]  
Demaurex N, 2002, NEWS PHYSIOL SCI, V17, P1
[6]  
Eshaghi M., 2015, PATHOGEN IN PRESS
[7]   Fluobodies: green fluorescent single-chain Fv fusion proteins [J].
Griep, RA ;
van Twisk, C ;
van der Wolf, JM ;
Schots, A .
JOURNAL OF IMMUNOLOGICAL METHODS, 1999, 230 (1-2) :121-130
[8]   Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy [J].
Haupts, U ;
Maiti, S ;
Schwille, P ;
Webb, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13573-13578
[9]   LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing [J].
Kabeya, Y ;
Mizushima, N ;
Uero, T ;
Yamamoto, A ;
Kirisako, T ;
Noda, T ;
Kominami, E ;
Ohsumi, Y ;
Yoshimori, T .
EMBO JOURNAL, 2000, 19 (21) :5720-5728
[10]   Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3 [J].
Kimura, Shunsuke ;
Noda, Takeshi ;
Yoshimori, Tamotsu .
AUTOPHAGY, 2007, 3 (05) :452-460