Stability and bifurcation of a ratio-dependent prey-predator system with cross-diffusion

被引:2
作者
Li, Chenglin [1 ]
机构
[1] Honghe Univ, Coll Math, Mengzi 661199, Peoples R China
关键词
Cross-diffusion; Stability; Bifurcation; Existence; II FUNCTIONAL-RESPONSE; STEADY-STATE SOLUTIONS; MODEL;
D O I
10.1016/j.camwa.2016.12.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is purported to investigate a ratio-dependent prey-predator system with cross-diffusion in a bounded domain under no flux boundary condition. The asymptotical stabilities of nonnegative constant solutions are investigated to this system. Moreover, without estimating the lower bounds of positive solutions, the existence, multiplicity of positive steady states are considered by using fixed points index theory, bifurcation theory, energy estimates and the differential method of implicit function and inverse function. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 20 条
[1]   A reaction-diffusion system modeling predator-prey with prey-taxis [J].
Ainseba, Bedr'Eddine ;
Bendahmane, Mostafa ;
Noussair, Ahmed .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) :2086-2105
[2]   HOPF BIFURCATION THEOREM IN INFINITE DIMENSIONS [J].
CRANDALL, MG ;
RABINOWITZ, PH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :53-72
[4]   Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge [J].
Ko, Wonlyul ;
Ryu, Kimun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 231 (02) :534-550
[5]   A qualitative study on general Gause-type predator-prey models with non-monotonic functional response [J].
Ko, Wonlyul ;
Ryu, Kimun .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) :2558-2573
[6]   Global solutions for a general strongly coupled prey-predator model [J].
Li, Huiling ;
Pang, Peter Y. H. ;
Wang, Mingxin .
APPLIED MATHEMATICS LETTERS, 2009, 22 (10) :1508-1512
[7]   COEXISTENCE THEOREMS OF STEADY-STATES FOR PREDATOR-PREY INTERACTING SYSTEMS [J].
LI, LG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 305 (01) :143-166
[8]  
Lopez-Gomez J., 1992, Differential Integral Equations, V5, P55
[9]  
Ni W., 1988, Notices of AMS, V15, P9
[10]  
Okubo A., 1980, DIFFUSION ECOLOGICAL