Global Existence and Optimal Convergence Rates of Solutions for Three-Dimensional Electromagnetic Fluid System

被引:2
作者
Li, Yin [1 ]
Wei, Ruiying [1 ]
Yao, Zheng-an [2 ]
机构
[1] Shaoguan Univ, Sch Math & Stat, Shaoguan 512005, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
electromagnetic fluid; decay rates; Fourier-splitting method; 35Q30; 76N15; 76P05; 82C40; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DECAY; MOTION;
D O I
10.1007/s10473-019-0212-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the electromagnetic fluid system in three-dimensional whole space (3). Under assumption of small initial data, we establish the unique global solution by energy method. Moreover, we obtain the time decay rates of the higher-order spatial derivatives of the solution by combining the L-p - L-q estimates for the linearized equations and an elaborate energy method when the L-1-norm of the perturbation is bounded.
引用
收藏
页码:469 / 490
页数:22
相关论文
共 50 条
[21]   GLOBAL EXISTENCE FOR THE THREE-DIMENSIONAL THERMOELASTIC EQUATIONS OF TYPE II [J].
Qin, Yuming ;
Deng, Shuxian ;
Huang, Lan ;
Ma, Zhiyong ;
Su, Xiaoke .
QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (02) :333-348
[22]   Global existence in a three-dimensional chemotaxis-Stokes system with ρ-Laplacian diffusion and singular sensitivity [J].
He, Ruina ;
Li, Zhongping .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
[23]   Global weak solutions to the three-dimensional inviscid Boussinesq system in the presence of magnetic field [J].
Li, Yang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06)
[24]   Existence of Weak Solutions for a Two-dimensional Fluid-rigid Body System [J].
Wang, Yun ;
Xin, Zhouping .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (03) :553-566
[25]   An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation [J].
Ke, Yuanyuan ;
Zheng, Jiashan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
[26]   Existence of global solutions for a chemotaxis-fluid system with nonlinear diffusion [J].
Chung, Yun-Sung ;
Kang, Kyungkeun .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)
[27]   Existence of Global Strong Solutions to a Beam-Fluid Interaction System [J].
Grandmont, Celine ;
Hillairet, Matthieu .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (03) :1283-1333
[28]   Global existence of three dimensional incompressible MHD flows [J].
Wang, Yu-Zhu ;
Li, Pengfei .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) :4246-4256
[29]   GLOBAL EXISTENCE AND OPTIMAL DECAY RATES OF SOLUTIONS FOR COMPRESSIBLE HALL-MHD EQUATIONS [J].
Gao, Jincheng ;
Yao, Zheng-An .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (06) :3077-3106
[30]   Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion [J].
Zhang, Qingshan ;
Li, Yuxiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3730-3754