Global Existence and Optimal Convergence Rates of Solutions for Three-Dimensional Electromagnetic Fluid System

被引:2
|
作者
Li, Yin [1 ]
Wei, Ruiying [1 ]
Yao, Zheng-an [2 ]
机构
[1] Shaoguan Univ, Sch Math & Stat, Shaoguan 512005, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
electromagnetic fluid; decay rates; Fourier-splitting method; 35Q30; 76N15; 76P05; 82C40; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DECAY; MOTION;
D O I
10.1007/s10473-019-0212-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the electromagnetic fluid system in three-dimensional whole space (3). Under assumption of small initial data, we establish the unique global solution by energy method. Moreover, we obtain the time decay rates of the higher-order spatial derivatives of the solution by combining the L-p - L-q estimates for the linearized equations and an elaborate energy method when the L-1-norm of the perturbation is bounded.
引用
收藏
页码:469 / 490
页数:22
相关论文
共 50 条