ADIOS 2: The Adaptable Input Output System. A framework for high-performance data management

被引:108
|
作者
Godoy, William F. [1 ]
Podhorszki, Norbert [1 ]
Wang, Ruonan [1 ]
Atkins, Chuck [2 ]
Eisenhauer, Greg [3 ]
Gu, Junmin [4 ]
Davis, Philip [5 ]
Choi, Jong [1 ]
Germaschewski, Kai [6 ,7 ]
Huck, Kevin [8 ]
Huebl, Axel [9 ]
Kim, Mark [1 ]
Kress, James [1 ]
Kurc, Tahsin [10 ]
Liu, Qing [11 ]
Logan, Jeremy [1 ]
Mehta, Kshitij [1 ]
Ostrouchov, George [1 ]
Parashar, Manish [5 ]
Poeschel, Franz [9 ]
Pugmire, David [1 ]
Suchyta, Eric [1 ]
Takahashi, Keichi [1 ]
Thompson, Nick [1 ]
Tsutsumi, Seiji [12 ]
Wan, Lipeng [1 ]
Wolf, Matthew [1 ]
Wu, Kesheng [4 ]
Klasky, Scott [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[2] Kitware Inc, Clifton Pk, NY USA
[3] Georgia Inst Technol, Sch Comp Sci, Atlanta, GA 30332 USA
[4] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[5] Rutgers State Univ, Comp Sci Dept, New Brunswick, NJ USA
[6] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[7] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[8] Univ Oregon, Eugene, OR 97403 USA
[9] Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[10] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[11] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[12] Japan Aerosp Explorat Agcy, Sagamihara, Kanagawa, Japan
关键词
High-performance computing (HPC); Scalable I/O; Luster GPFS file systems; Staging; RDMA; Data science; In-situ; Exascale computing; TABLE DATA SYSTEM; REDUCTION;
D O I
10.1016/j.softx.2020.100561
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present ADIOS 2, the latest version of the Adaptable Input Output (I/O) System. ADIOS 2 addresses scientific data management needs ranging from scalable I/O in supercomputers, to data analysis in personal computer and cloud systems. Version 2 introduces a unified application programming interface (API) that enables seamless data movement through files, wide-area-networks, and direct memory access, as well as high-level APIs for data analysis. The internal architecture provides a set of reusable and extendable components for managing data presentation and transport mechanisms for new applications. ADIOS 2 bindings are available in C++11, C, Fortran, Python, and Matlab and are currently used across different scientific communities. ADIOS 2 provides a communal framework to tackle data management challenges as we approach the exascale era of supercomputing. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] High-Performance Multiple-Input Multiple-Output Antenna System For 5G Mobile Terminals
    Abdullah, Mujeeb
    Kiani, Saad Hassan
    Abdulrazak, Lway Faisal
    Iqbal, Amjad
    Bashir, M. A.
    Khan, Shafiullah
    Kim, Sunghwan
    ELECTRONICS, 2019, 8 (10)
  • [22] Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools
    Ogasawara, Takeshi
    Cheng, Yinhe
    Tzeng, Tzy-Hwa Kathy
    PLOS ONE, 2016, 11 (11):
  • [23] High-Performance Optimization Framework for Reversible Data Hiding Predictor
    Ma, Bin
    Duan, Hongtao
    Ma, Ruihe
    Xian, Yongjin
    Li, Xiaolong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 231 - 235
  • [24] Data management for high-performance computing users.
    Kleese, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U372 - U373
  • [25] High-performance Negative Database for Massive Data Management System of The Mingantu Spectral Radioheliograph
    Shi, Congming
    Wang, Feng
    Deng, Hui
    Liu, Yingbo
    Liu, Cuiyin
    Wei, Shoulin
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2017, 129 (978)
  • [26] Meta-data management system for high-performance large-scale scientific data access
    Liao, WK
    Shen, XH
    Choudhary, A
    HIGH PERFORMANCE COMPUTING - HIPC 2000, PROCEEDINGS, 2001, 1970 : 293 - 300
  • [27] A System-Level Optimization Framework for High-Performance Networking
    Benson, Thomas M.
    2014 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2014,
  • [28] Building a high-performance communication framework for network isolation system
    Wu, Haiyan
    Tan, Chengxiang
    Wang, Haihang
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1086 - 1091
  • [29] IESopt: A Modular Framework for High-Performance Energy System Optimization
    Stroemer, Stefan
    Maggauer, Klara
    2024 OPEN SOURCE MODELLING AND SIMULATION OF ENERGY SYSTEMS, OSMSES 2024, 2024,
  • [30] A high-performance batched matrix multiplication framework for GPUs under unbalanced input distribution
    Ruimin Wang
    Zhiwei Yang
    Hao Xu
    Lu Lu
    The Journal of Supercomputing, 2022, 78 : 1741 - 1758