Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations

被引:27
|
作者
Li, Meng [1 ,3 ]
Huang, Chengming [1 ,2 ]
Ming, Wanyuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
Time-fractional diffusion equations; Time-fractional diffusion-wave equations; Mixed finite-element method; Stability analysis; Error estimates; DISCONTINUOUS GALERKIN METHOD; NUMERICAL-METHODS; SPACE; APPROXIMATIONS;
D O I
10.1007/s40314-017-0447-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, numerical theory based on the mixed finite-element method and finite difference analog of the Caputo fractional derivative for multi-term time-fractional diffusion equations and diffusion-wave equations is analyzed. The unconditional stability and convergence results are proved for the two resulting fully discrete schemes. Finally, the obtained results are supported by numerical experiments carried out for some test problems.
引用
收藏
页码:2309 / 2334
页数:26
相关论文
共 50 条
  • [31] A finite element approximation for a class of Caputo time-fractional diffusion equations
    Ammi, Moulay Rchid Sidi
    Jamiai, Ismail
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1334 - 1344
  • [32] Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis
    Yang, Yin
    Chen, Yanping
    Huang, Yunqing
    Wei, Huayi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1218 - 1232
  • [33] Optimal pointwise-in-time error analysis of a mixed finite element method for a multi-term time-fractional fourth-order equation
    Huang, Chaobao
    An, Na
    Chen, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 135 : 149 - 156
  • [34] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493
  • [35] Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation
    Ren, Jincheng
    Long, Xiaonian
    Mao, Shipeng
    Zhang, Jiwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (03) : 917 - 935
  • [36] Numerical solutions of multi-term fractional reaction-diffusion equations
    Zou, Leqiang
    Zhang, Yanzi
    AIMS MATHEMATICS, 2025, 10 (01): : 777 - 792
  • [37] A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations
    Liu, Huan
    Cheng, Aijie
    Wang, Hong
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
  • [38] A Weak Galerkin Finite Element Method for High Dimensional Time-fractional Diffusion Equation
    Wang, Xiuping
    Gao, Fuzheng
    Liu, Yang
    Sun, Zhengjia
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386 (386)
  • [39] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Zeng, Zhankuan
    Chen, Yanping
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 839 - 854
  • [40] A NOVEL FINITE ELEMENT METHOD FOR A CLASS OF TIME FRACTIONAL DIFFUSION EQUATIONS
    Sun, H. G.
    Chen, W.
    Sze, K. Y.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, : 369 - 376