Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations

被引:27
|
作者
Li, Meng [1 ,3 ]
Huang, Chengming [1 ,2 ]
Ming, Wanyuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
Time-fractional diffusion equations; Time-fractional diffusion-wave equations; Mixed finite-element method; Stability analysis; Error estimates; DISCONTINUOUS GALERKIN METHOD; NUMERICAL-METHODS; SPACE; APPROXIMATIONS;
D O I
10.1007/s40314-017-0447-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, numerical theory based on the mixed finite-element method and finite difference analog of the Caputo fractional derivative for multi-term time-fractional diffusion equations and diffusion-wave equations is analyzed. The unconditional stability and convergence results are proved for the two resulting fully discrete schemes. Finally, the obtained results are supported by numerical experiments carried out for some test problems.
引用
收藏
页码:2309 / 2334
页数:26
相关论文
共 50 条
  • [21] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [22] Error estimates of a semidiscrete finite element method for fractional stochastic diffusion-wave equations
    Zou, Guang-an
    Atangana, Abdon
    Zhou, Yong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1834 - 1848
  • [23] A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method
    Bhardwaj, Akanksha
    Kumar, Alpesh
    ENGINEERING WITH COMPUTERS, 2022, 38 (02) : 1883 - 1903
  • [24] Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient
    Shi, Y. H.
    Zhao, Y. M.
    Wang, F. L.
    Tang, Y. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (08) : 1621 - 1635
  • [25] An RBF Based Finite Difference Method for the Numerical Approximation of Multi-term Nonlinear Time Fractional Two Dimensional Diffusion-Wave Equation
    Bhardwaj A.
    Kumar A.
    Tiwari A.K.
    International Journal of Applied and Computational Mathematics, 2022, 8 (2)
  • [26] A numerical solution of time-fractional mixed diffusion and diffusion-wave equation by an RBF-based meshless method
    Akanksha Bhardwaj
    Alpesh Kumar
    Engineering with Computers, 2022, 38 : 1883 - 1903
  • [27] A Mixed Finite Volume Element Method for Time-Fractional Reaction-Diffusion Equations on Triangular Grids
    Zhao, Jie
    Li, Hong
    Fang, Zhichao
    Liu, Yang
    MATHEMATICS, 2019, 7 (07)
  • [28] A meshless method for time fractional nonlinear mixed diffusion and diffusion-wave equation
    Bhardwaj, Akanksha
    Kumar, Alpesh
    APPLIED NUMERICAL MATHEMATICS, 2021, 160 (160) : 146 - 165
  • [29] ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION
    Liu, Huan
    Null, Xiangcheng Zheng
    Fu, Hongfei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (05): : 818 - 838
  • [30] A semi-discrete finite element method for a class of time-fractional diffusion equations
    Sun, HongGuang
    Chen, Wen
    Sze, K. Y.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990):