Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations

被引:27
|
作者
Li, Meng [1 ,3 ]
Huang, Chengming [1 ,2 ]
Ming, Wanyuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
关键词
Time-fractional diffusion equations; Time-fractional diffusion-wave equations; Mixed finite-element method; Stability analysis; Error estimates; DISCONTINUOUS GALERKIN METHOD; NUMERICAL-METHODS; SPACE; APPROXIMATIONS;
D O I
10.1007/s40314-017-0447-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, numerical theory based on the mixed finite-element method and finite difference analog of the Caputo fractional derivative for multi-term time-fractional diffusion equations and diffusion-wave equations is analyzed. The unconditional stability and convergence results are proved for the two resulting fully discrete schemes. Finally, the obtained results are supported by numerical experiments carried out for some test problems.
引用
收藏
页码:2309 / 2334
页数:26
相关论文
共 50 条