Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations

被引:27
|
作者
Li, Meng [1 ,3 ]
Huang, Chengming [1 ,2 ]
Ming, Wanyuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 02期
关键词
Time-fractional diffusion equations; Time-fractional diffusion-wave equations; Mixed finite-element method; Stability analysis; Error estimates; DISCONTINUOUS GALERKIN METHOD; NUMERICAL-METHODS; SPACE; APPROXIMATIONS;
D O I
10.1007/s40314-017-0447-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, numerical theory based on the mixed finite-element method and finite difference analog of the Caputo fractional derivative for multi-term time-fractional diffusion equations and diffusion-wave equations is analyzed. The unconditional stability and convergence results are proved for the two resulting fully discrete schemes. Finally, the obtained results are supported by numerical experiments carried out for some test problems.
引用
收藏
页码:2309 / 2334
页数:26
相关论文
共 50 条
  • [1] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [2] Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
    Jiang, H.
    Liu, F.
    Turner, I.
    Burrage, K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3377 - 3388
  • [3] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192
  • [4] A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction-Diffusion Equations
    Zhao, Jie
    Dong, Shubin
    Fang, Zhichao
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [5] A Superconvergent Nonconforming Mixed FEM for Multi-Term Time-Fractional Mixed Diffusion and Diffusion-Wave Equations with Variable Coefficients
    Fan, Huijun
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Tang, Yifa
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 63 - 92
  • [6] A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations
    Zhou, Jun
    Xu, Da
    Chen, Hongbin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 181 - 193
  • [7] ANISOTROPIC EQROT 1 FINITE ELEMENT APPROXIMATION FOR A MULTI-TERM TIME-FRACTIONAL MIXED SUB-DIFFUSION AND DIFFUSION-WAVE EQUATION
    Fan, Huijun
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Liu, Fawang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03): : 439 - 440
  • [8] Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations
    Jalil Rashidinia
    Elham Mohmedi
    Computational and Applied Mathematics, 2020, 39
  • [9] Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations
    Rashidinia, Jalil
    Mohmedi, Elham
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [10] Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation
    Liu, Yanqin
    Sun, HongGuang
    Yin, Xiuling
    Feng, Libo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):