Forward and inverse problems in the mechanics of soft filaments

被引:142
作者
Gazzola, M. [1 ,2 ]
Dudte, L. H. [3 ]
McCormick, A. G. [5 ]
Mahadevan, L. [3 ,4 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[3] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] Google, Mountain View, CA 94043 USA
来源
ROYAL SOCIETY OPEN SCIENCE | 2018年 / 5卷 / 06期
基金
瑞士国家科学基金会;
关键词
soft filaments; computational mechanics; Cosserat theory; TWISTED RODS; DYNAMICS; ADAPTATION; EVOLUTION; SIMULATIONS; LOCOMOTION; SWIMMERS; DESIGN; HELIX;
D O I
10.1098/rsos.171628
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Soft slender structures are ubiquitous in natural and artificial systems, in active and passive settings and across scales, from polymers and flagella, to snakes and space tethers. In this paper, we demonstrate the use of a simple and practical numerical implementation based on the Cosserat rod model to simulate the dynamics of filaments that can bend, twist, stretch and shear while interacting with complex environments via muscular activity, surface contact, friction and hydrodynamics. We validate our simulations by solving a number of forward problems involving the mechanics of passive filaments and comparing them with known analytical results, and extend them to study instabilities in stretched and twisted filaments that form solenoidal and plectonemic structures. We then study active filaments such as snakes and other slender organisms by solving inverse problems to identify optimal gaits for limbless locomotion on solid surfaces and in bulk liquids.
引用
收藏
页数:35
相关论文
共 103 条
  • [1] Optimizing snake locomotion in the plane
    Alben, Silas
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2159):
  • [2] ALTRINGHAM JD, 1990, J EXP BIOL, V148, P395
  • [3] [Anonymous], 1906, TREATISE MATH THEORY, DOI DOI 10.1038/074074A0
  • [4] [Anonymous], 1883, THEORIE ELASTICITE C
  • [5] [Anonymous], 2000, PARTIAL DIFFERENTIAL
  • [6] [Anonymous], 1984, COURSE THEORETICAL P
  • [7] Antman SS, 1973, THE THEORY OF RODS
  • [8] From the elastica compass to the elastica catapult: an essay on the mechanics of soft robot arm
    Armanini, C.
    Dal Corso, F.
    Misseroni, D.
    Bigoni, D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2198):
  • [9] NUMERICAL ANALYSIS OF COSSERAT ROD AND STRING MODELS FOR VISCOUS JETS IN ROTATIONAL SPINNING PROCESSES
    Arne, Walter
    Marheineke, Nicole
    Meister, Andreas
    Wegener, Raimund
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (10) : 1941 - 1965
  • [10] A discrete geometric approach for simulating the dynamics of thin viscous threads
    Audoly, B.
    Clauvelin, N.
    Brun, P. -T.
    Bergou, M.
    Grinspun, E.
    Wardetzky, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 18 - 49