Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease

被引:64
作者
Oikonomou, Evangelos K. [1 ,2 ]
Siddique, Musib [1 ,3 ]
Antoniades, Charalambos [1 ,4 ,5 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Radcliffe Dept Med, Div Cardiovasc Med, Oxford OX3 9DU, England
[2] Yale Sch Med, Yale New Haven Hosp, Dept Internal Med, New Haven, CT USA
[3] Caristo Diagnost Ltd, Oxford, England
[4] British Heart Fdn, Oxford Ctr Res Excellence, Oxford, England
[5] Natl Inst Hlth Res, Oxford Biomed Res Ctr, Oxford, England
基金
英国医学研究理事会;
关键词
Artificial intelligence; Radiomics; Computed tomography; Plaque; Atherosclerosis; Risk prediction; CORONARY-ARTERY-DISEASE; COMPUTED-TOMOGRAPHY; ADIPOSE-TISSUE; BIG DATA; INFLAMMATION; ANGIOGRAPHY; HEART; RISK; ADIPONECTIN; PREDICTION;
D O I
10.1093/cvr/cvaa021
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expansion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging is the pillar of modern cardiovascular diagnostics, with modalities such as cardiac computed tomography (CT) now recognized as first-line options for cardiovascular risk stratification and the assessment of stable or even unstable patients. To date, cardiovascular imaging has lagged behind other fields, such as oncology, in the clinical translational of artificial intelligence (AI)-based approaches. We hereby review the current status of AI in non-invasive cardiovascular imaging, using cardiac CT as a running example of how novel machine learning (ML)-based radiomic approaches can improve clinical care. The integration of ML, deep learning, and radiomic methods has revealed direct links between tissue imaging phenotyping and tissue biology, with important clinical implications. More specifically, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging and CT, as well as lessons that can be learned from other areas. Finally, we propose a scientific framework in order to ensure the clinical and scientific validity of future studies in this novel, yet highly promising field. Still in its infancy, AI-based cardiovascular imaging has a lot to offer to both the patients and their doctors as it catalyzes the transition towards a more precise phenotyping of cardiovascular disease. [GRAPHICS] .
引用
收藏
页码:2040 / 2054
页数:15
相关论文
共 88 条
[41]   Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: A machine learning approach [J].
Han, Donghee ;
Lee, Ji Hyun ;
Rizvi, Asim ;
Gransar, Heidi ;
Baskaran, Lohendran ;
Schulman-Marcus, Joshua ;
Hartaigh, Briain O. ;
Lin, Fay Y. ;
Min, James K. .
JOURNAL OF NUCLEAR CARDIOLOGY, 2018, 25 (01) :223-233
[42]   Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network [J].
Hannun, Awni Y. ;
Rajpurkar, Pranav ;
Haghpanahi, Masoumeh ;
Tison, Geoffrey H. ;
Bourn, Codie ;
Turakhia, Mintu P. ;
Ng, Andrew Y. .
NATURE MEDICINE, 2019, 25 (01) :65-+
[43]   CT support of cardiac structural interventions [J].
Hell, Michaela M. ;
Achenbach, Stephan .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1098)
[44]   Texture analysis of acute myocardial infarction with CT: First experience study [J].
Hinzpeter, Ricarda ;
Wagner, Matthias W. ;
Wurnig, Moritz C. ;
Seifert, Burkhardt ;
Manka, Robert ;
Alkadhi, Hatem .
PLOS ONE, 2017, 12 (11)
[45]  
Huang WM, 2018, IEEE ENG MED BIO, P608, DOI 10.1109/EMBC.2018.8512328
[46]   Automatic Coronary Calcium Scoring in Low-Dose Chest Computed Tomography [J].
Isgum, Ivana ;
Prokop, Mathias ;
Niemeijer, Meindert ;
Viergever, Max A. ;
van Ginneken, Bram .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (12) :2322-2334
[47]   Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography [J].
Kang, Dongwoo ;
Dey, Damini ;
Slomka, Piotr J. ;
Arsanjani, Reza ;
Nakazato, Ryo ;
Ko, Hyunsuk ;
Berman, Daniel S. ;
Li, Debiao ;
Kuoa, C-C. Jay .
JOURNAL OF MEDICAL IMAGING, 2015, 2 (01)
[48]   With Great Power Comes Great Responsibility Big Data Research From the National Inpatient Sample [J].
Khera, Rohan ;
Krumholz, Harlan M. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2017, 10 (07)
[49]   2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) [J].
Knuuti, Juhani ;
Wijns, William ;
Saraste, Antti ;
Capodanno, Davide ;
Barbato, Emanuele ;
Funck-Brentano, Christian ;
Prescott, Eva ;
Storey, Robert F. ;
Deaton, Christi ;
Cuisset, Thomas ;
Agewall, Stefan ;
Dickstein, Kenneth ;
Edvardsen, Thor ;
Escaned, Javier ;
Gersh, Bernard J. ;
Svitil, Pavel ;
Gilard, Martine ;
Hasdai, David ;
Hatala, Robert ;
Mahfoud, Felix ;
Masip, Josep ;
Muneretto, Claudio ;
Valgimigli, Marco ;
Achenbach, Stephan ;
Bax, Jeroen J. ;
Neumann, Franz-Josef ;
Sechtem, Udo ;
Banning, Adrian Paul ;
Bonaros, Nikolaos ;
Bueno, Hector ;
Bugiardini, Raffaele ;
Chieffo, Alaide ;
Crea, Filippo ;
Czerny, Martin ;
Delgado, Victoria ;
Dendale, Paul .
EUROPEAN HEART JOURNAL, 2020, 41 (03) :407-477
[50]   Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study [J].
Kolossvary, Marton ;
Karady, Julia ;
Kikuchi, Yasuka ;
Ivanov, Alexander ;
Schlett, Christopher L. ;
Lu, Michael T. ;
Foldyna, Borek ;
Merkely, Bela ;
Aerts, Hugo J. ;
Hoffmann, Udo ;
Maurovich-Horvat, Pal .
RADIOLOGY, 2019, 293 (01) :89-96