Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information

被引:120
|
作者
Tang, Wei [1 ]
Shi, Zhenwei [2 ,3 ]
Wu, Ying [4 ]
Zhang, Changshui [5 ]
机构
[1] Beihang Univ, Image Proc Ctr, Sch Astronaut, Beijing 100191, Peoples R China
[2] Beihang Univ, Image Proc Ctr, Sch Astronaut, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[3] Beihang Univ, Beijing Key Lab Digital Media, Beijing 100191, Peoples R China
[4] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[5] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Tsinghua Natl Lab Informat Sci & Technol, Dept Automat, Beijing 100084, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2015年 / 53卷 / 02期
基金
中国国家自然科学基金;
关键词
Alternating direction method of multipliers (ADMM); hyperspectral unmixing; sparse unmixing; spectral a priori information; NONNEGATIVE MATRIX FACTORIZATION; ALGORITHM; ENDMEMBERS;
D O I
10.1109/TGRS.2014.2328336
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Given a spectral library, sparse unmixing aims at finding the optimal subset of endmembers from it to model each pixel in the hyperspectral scene. However, sparse unmixing still remains a challenging task due to the usually high mutual coherence of the spectral library. In this paper, we exploit the spectral a priori information in the hyperspectral image to alleviate this difficulty. It assumes that some materials in the spectral library are known to exist in the scene. Such information can be obtained via field investigation or hyperspectral data analysis. Then, we propose a novel model to incorporate the spectral a priori information into sparse unmixing. Based on the alternating direction method of multipliers, we present a new algorithm, which is termed sparse unmixing using spectral a priori information (SUnSPI), to solve the model. Experimental results on both synthetic and real data demonstrate that the spectral a priori information is beneficial to sparse unmixing and that SUnSPI can exploit this information effectively to improve the abundance estimation.
引用
收藏
页码:770 / 783
页数:14
相关论文
共 50 条
  • [1] Spatial-Spectral Multiscale Sparse Unmixing for Hyperspectral Images
    Ince, Taner
    Dobigeon, Nicolas
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20 : 1 - 5
  • [2] Subspace Matching Pursuit for Sparse Unmixing of Hyperspectral Data
    Shi, Zhenwei
    Tang, Wei
    Duren, Zhana
    Jiang, Zhiguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06): : 3256 - 3274
  • [3] Fusion of Hyperspectral and Multispectral Images Using Spectral Unmixing and Sparse Coding
    Nezhad, Zahra Hashemi
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2377 - 2389
  • [4] Futuristic Greedy Approach to Sparse Unmixing of Hyperspectral Data
    Akhtar, Naveed
    Shafait, Faisal
    Mian, Ajmal
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (04): : 2157 - 2174
  • [5] Sparse Unmixing of Hyperspectral Data
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06): : 2014 - 2039
  • [6] l0-based sparse hyperspectral unmixing using spectral information and a multi -objectives formulation
    Xu, Xia
    Shi, Zhenwei
    Pan, Bin
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 141 : 46 - 58
  • [7] Sparse unmixing of hyperspectral data with bandwise model
    Li, Chang
    Liu, Yu
    Cheng, Juan
    Song, Rencheng
    Ma, Jiayi
    Sui, Chenhong
    Chen, Xun
    INFORMATION SCIENCES, 2020, 512 : 1424 - 1441
  • [8] Sparse Hyperspectral Unmixing Using Spectral Library Adaptive Adjustment
    Zhang, Zuoyu
    Liao, Shouyi
    Fang, Hao
    Zhang, Hexin
    Wang, Shicheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4873 - 4887
  • [9] SUPERRESOLUTION OF HYPERSPECTRAL IMAGES USING SPECTRAL UNMIXING AND SPARSE REGULARIZATION
    Nezhad, Zahra Hashemi
    Karami, Azam
    Heylen, Rob
    Scheunders, Paul
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7216 - 7219
  • [10] ROBUST SPARSE UNMIXING OF HYPERSPECTRAL DATA
    Ma, Yang
    Li, Chang
    Ma, Jiayi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6193 - 6196