SINGLE-MOLECULE LOCALIZATION MICROSCOPY RECONSTRUCTION USING NOISE2NOISE FOR SUPER-RESOLUTION IMAGING OF ACTIN FILAMENTS

被引:0
作者
Lefebvre, Joel [1 ]
Javer, Avelino [1 ]
Dmitrieva, Manila [1 ]
Rittscher, Jens [1 ]
Lewkow, Bohdan [2 ]
Allgeyer, Edward [2 ]
Sirinakis, George [2 ]
St Johnston, Daniel [2 ]
机构
[1] Univ Oxford, Inst Biomed Engn, Big Data Inst, Oxford, England
[2] Univ Cambridge, Wellcome Trust CRUK Gurdon Inst, St Johnston Lab, Cambridge, England
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会; 芬兰科学院; 英国惠康基金;
关键词
Single-Molecule Localization Microscopy; Image Reconstruction; Self-supervision; Actin;
D O I
10.1109/isbi45749.2020.9098713
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Single-molecule localization microscopy (SMLM) is a super-resolution imaging technique developed to image structures smaller than the diffraction limit. This modality results in sparse and non-uniform sets of localized blinks that need to be reconstructed to obtain a super-resolution representation of a tissue. In this paper, we explore the use of the Noise2Noise (N2N) paradigm to reconstruct the SMLM images. Noise2Noise is an image denoising technique where a neural network is trained with only pairs of noisy realizations of the data instead of using pairs of noisy/clean images, as performed with Noise2Clean (N2C). Here we have adapted Noise2Noise to the 2D SMLM reconstruction problem, exploring different pair creation strategies (fixed and dynamic). The approach was applied to synthetic data and to real 2D SMLM data of actin filaments. This revealed that N2N can achieve reconstruction performances close to the Noise2Clean training strategy, without having access to the super-resolution images. This could open the way to further improvement in SMLM acquisition speed and reconstruction performance.
引用
收藏
页码:1596 / 1599
页数:4
相关论文
共 7 条
[1]  
Huang F, 2013, NAT METHODS, V10, P653, DOI [10.1038/NMETH.2488, 10.1038/nmeth.2488]
[2]  
Lehtinen J, 2018, PR MACH LEARN RES, V80
[3]   Deep learning massively accelerates super-resolution localization microscopy [J].
Ouyang, Wei ;
Aristov, Andrey ;
Lelek, Mickael ;
Hao, Xian ;
Zimmer, Christophe .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :460-+
[4]   Lifeact: a versatile marker to visualize F-actin [J].
Riedl, Julia ;
Crevenna, Alvaro H. ;
Kessenbrock, Kai ;
Yu, Jerry Haochen ;
Neukirchen, Dorothee ;
Bista, Michal ;
Bradke, Frank ;
Jenne, Dieter ;
Holak, Tad A. ;
Werb, Zena ;
Sixt, Michael ;
Wedlich-Soldner, Roland .
NATURE METHODS, 2008, 5 (07) :605-607
[5]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[6]   Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software [J].
Sage, Daniel ;
Thanh-An Pham ;
Babcock, Hazen ;
Lukes, Tomas ;
Pengo, Thomas ;
Chao, Jerry ;
Velmurugan, Ramraj ;
Herbert, Alex ;
Agrawal, Anurag ;
Colabrese, Silvia ;
Wheeler, Ann ;
Archetti, Anna ;
Rieger, Bernd ;
Ober, Raimund ;
Hagen, Guy M. ;
Sibarita, Jean-Baptiste ;
Ries, Jonas ;
Henriques, Ricardo ;
Unser, Michael ;
Holden, Seamus .
NATURE METHODS, 2019, 16 (05) :387-+
[7]   An introduction to optical super-resolution microscopy for the adventurous biologist [J].
Vangindertael, J. ;
Camacho, R. ;
Sempels, W. ;
Mizuno, H. ;
Dedecker, P. ;
Janssen, K. P. F. .
METHODS AND APPLICATIONS IN FLUORESCENCE, 2018, 6 (02)