GEGENBAUER POLYNOMIALS OF TWO VARIABLES AND THEIR PROPERTIES

被引:0
|
作者
Nadeem, Raghib [1 ]
Khan, Abdul Hakim [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Abouzaid, Moheb Saad [2 ,3 ]
Abusufian, Abdallah Hassan [2 ]
机构
[1] Aligarh Muslim Univ, Zakir Hussain Coll Engn & Technol, Dept Appl Math, Aligarh, Uttar Pradesh, India
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci Wadi Aldawaser, Dept Math, Alkharj 11991, Saudi Arabia
[3] Kafrelshiekh Univ, Fac Sci, Dept Math, Kafr Al Sheikh, Egypt
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2020年 / 19卷 / 04期
关键词
Gegenbauer polynomials of two variables; generating functions; Rodrigues formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The principal aim of this paper is to introduce Gegenbauer polynomials of two variables and investigate their properties. The explicit representation, generating functions, hypergeometric representations, Rodrigues formula and orthogonality of these polynomials are obtained. Further, the recurrence relations and relationship of these polynomials with some other polynomials are also derived. The surface plot of these polynomials is represented with the help of Matlab.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [21] A NOTE ON GENERATING FUNCTIONS AND SUMMATION FORMULAE FOR MEIXNER POLYNOMIALS OF SEVERAL VARIABLES
    Khan, Mumtaz
    Akhlaq, Mohd
    DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 51 - 66
  • [22] Some properties of Konhauser matrix polynomials
    Varma, Serhan
    Yesildal, Fatma Tasdelen
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2016, 29 (03): : 703 - 709
  • [23] Some properties of Bernoulli polynomials and their generalizations
    Lu, Da-Qian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 746 - 751
  • [24] Orthogonality properties of the Hermite and related polynomials
    Dattoli, G
    Srivastava, HM
    Zhukovsky, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 165 - 172
  • [25] A note on two-variable Chebyshev polynomials
    Cesarano, Clemente
    Fornaro, Claudio
    GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (03) : 339 - 349
  • [26] Some Identities for the Two Variable Fubini Polynomials
    Su, Dan-Dan
    He, Yuan
    MATHEMATICS, 2019, 7 (02)
  • [27] Recent Trends on Two Variable Orthogonal Polynomials
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    DIFFERENTIAL ALGEBRA, COMPLEX ANALYSIS AND ORTHOGONAL POLYNOMIALS, 2010, 509 : 59 - +
  • [28] q-Extension of a Multivariable and Multiparameter Generalization of the Gottlieb Polynomials in Several Variables
    Choi, Junesang
    Srivastava, H. M.
    TOKYO JOURNAL OF MATHEMATICS, 2014, 37 (01) : 111 - 125
  • [29] CERTAIN CLASSES OF MULTIPLE GENERATING FUNCTIONS FOR SOME SETS OF POLYNOMIALS IN SEVERAL VARIABLES
    Pathan, M. A.
    Jaimini, B. B.
    Gautam, Shiksha
    MATEMATICKI VESNIK, 2011, 63 (01): : 45 - 54
  • [30] Algebraic properties and Fourier expansions of two-dimensional Apostol-Bernoulli and Apostol-Euler polynomials
    Bayad, Abdelmejid
    Navas, Luis
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 883 - 892