GEGENBAUER POLYNOMIALS OF TWO VARIABLES AND THEIR PROPERTIES

被引:0
|
作者
Nadeem, Raghib [1 ]
Khan, Abdul Hakim [1 ]
Nisar, Kottakkaran Sooppy [2 ]
Abouzaid, Moheb Saad [2 ,3 ]
Abusufian, Abdallah Hassan [2 ]
机构
[1] Aligarh Muslim Univ, Zakir Hussain Coll Engn & Technol, Dept Appl Math, Aligarh, Uttar Pradesh, India
[2] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci Wadi Aldawaser, Dept Math, Alkharj 11991, Saudi Arabia
[3] Kafrelshiekh Univ, Fac Sci, Dept Math, Kafr Al Sheikh, Egypt
来源
ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES | 2020年 / 19卷 / 04期
关键词
Gegenbauer polynomials of two variables; generating functions; Rodrigues formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The principal aim of this paper is to introduce Gegenbauer polynomials of two variables and investigate their properties. The explicit representation, generating functions, hypergeometric representations, Rodrigues formula and orthogonality of these polynomials are obtained. Further, the recurrence relations and relationship of these polynomials with some other polynomials are also derived. The surface plot of these polynomials is represented with the help of Matlab.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [1] Certain properties of Gegenbauer polynomials via Lie algebra
    Prajapati, Jyotindra C.
    Choi, Junesang
    Kachhia, Krunal B.
    Agarwal, Praveen
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (04) : 1031 - 1037
  • [2] Certain properties of Gegenbauer polynomials via Lie algebra
    Jyotindra C. Prajapati
    Junesang Choi
    Krunal B. Kachhia
    Praveen Agarwal
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 1031 - 1037
  • [3] A generalization of the symmetric classical polynomials: Hermite and Gegenbauer polynomials
    Ben Romdhane, Neila
    Gaied, Mohamed
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (03) : 227 - 244
  • [4] ON PSEUDO HERMITE MATRIX POLYNOMIALS OF TWO VARIABLES
    Metwally, M. S.
    Mohamed, M. T.
    Shehata, A.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2010, 4 (02): : 169 - 178
  • [5] GENERALIZATION OF LAGUERRE MATRIX POLYNOMIALS FOR TWO VARIABLES
    Ali, Asad
    Iqbal, Muhammad Zafar
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (01): : 141 - 151
  • [6] A NOTE ON POLY-FUBINI POLYNOMIALS OF TWO VARIABLES
    Acala, Nestor G.
    Macababat, Maida B.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2021, 12 (01): : 1 - 13
  • [7] Families of linear generating functions for polynomials in two variables
    Altin, Abdullah
    Erkus, Esra
    Oezarslan, Mehmet Ali
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (05) : 315 - 320
  • [8] JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS
    Khan, Mumtaz Ahmad
    Asif, Mohammad
    MATEMATICKI VESNIK, 2012, 64 (02): : 147 - 158
  • [9] A matrix Rodrigues formula for classical orthogonal polynomials in two variables
    Alvarez de Morales, Maria
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2009, 157 (01) : 32 - 52
  • [10] The Lagrange polynomials in several variables
    Chan, WCC
    Chyan, CJ
    Srivastava, HM
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2001, 12 (02) : 139 - 148