Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations

被引:34
|
作者
Ayuso de Dios, Blanca [2 ]
Zikatanov, Ludmil [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin finite element methods; Subspace correction methods; Interior Penalty methods; Iterative methods for non-symmetric problems; FINITE-ELEMENT METHODS; INTERIOR PENALTY; SCHWARZ PRECONDITIONERS; ELLIPTIC PROBLEMS; APPROXIMATIONS; DECOMPOSITION; ALGORITHMS;
D O I
10.1007/s10915-009-9293-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present iterative and preconditioning techniques for the solution of the linear systems resulting from several discontinuous Galerkin (DG) Interior Penalty (IP) discretizations of elliptic problems. We analyze the convergence properties of these algorithms for both symmetric and non-symmetric IP schemes. The iterative methods are based on a "natural" decomposition of the first order DG finite element space as a direct sum of the Crouzeix-Raviart non-conforming finite element space and a subspace that contains functions discontinuous at interior faces. We also present numerical examples confirming the theoretical results.
引用
收藏
页码:4 / 36
页数:33
相关论文
共 50 条
  • [1] Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations
    Blanca Ayuso de Dios
    Ludmil Zikatanov
    Journal of Scientific Computing, 2009, 40 : 4 - 36
  • [2] A Simple Uniformly Convergent Iterative Method for the Non-symmetric Incomplete Interior Penalty Discontinuous Galerkin Discretization
    Ayuso, Blanca
    Zikatanov, Ludmil T.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XIX, 2011, 78 : 335 - +
  • [3] UNIFORMLY STABLE DISCONTINUOUS GALERKIN DISCRETIZATION AND ROBUST ITERATIVE SOLUTION METHODS FOR THE BRINKMAN PROBLEM
    Hong, Qingguo
    Kraus, Johannes
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (05) : 2750 - 2774
  • [4] Hybrid multigrid methods for high-order discontinuous Galerkin discretizations
    Fehn, Niklas
    Munch, Peter
    Wall, Wolfgang A.
    Kronbichler, Martin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
  • [5] Block Jacobi for Discontinuous Galerkin Discretizations: No Ordinary Schwarz Methods
    Gander, Martin J.
    Hajian, Soheil
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 305 - 313
  • [6] Strong Stability Preserving Explicit Peer Methods for Discontinuous Galerkin Discretizations
    Klinge, Marcel
    Weiner, Rudiger
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 1057 - 1078
  • [7] Nonoverlapping spectral additive Schwarz methods for hybrid discontinuous Galerkin discretizations
    Yu, Yi
    Dryja, Maksymilian
    Sarkis, Marcus
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 44 (01) : 192 - 224
  • [8] MULTIGRID ALGORITHMS FOR hp-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS
    Antonietti, Paola F.
    Sarti, Marco
    Verani, Marco
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 598 - 618
  • [9] Domain Decomposition Preconditioners for Discontinuous Galerkin Discretizations of Compressible Fluid Flows
    Giani, Stefano
    Houston, Paul
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (02) : 123 - 148
  • [10] A BDDC algorithm for a class of staggered discontinuous Galerkin methods
    Kim, Hyea Hyun
    Chung, Eric T.
    Lee, Chak Shing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (07) : 1373 - 1389