Plasma-immersion ion implantation for diffusive treatment

被引:73
|
作者
Möller, W [1 ]
Parascandola, S [1 ]
Kruse, O [1 ]
Günzel, R [1 ]
Richter, E [1 ]
机构
[1] Rossendorf Inc, Forschungszentrum Rossendorf EV, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
来源
关键词
diffusion; ion implantation; nitriding; plasma immersion;
D O I
10.1016/S0257-8972(99)00144-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasma-immersion implantation is described as a technique providing high kinetic energies and, thereby, high penetration depths of atoms injected for surface modification. In connection with ion sputtering, this may create favourable boundary conditions for the efficiency of diffusive surface treatment such as nitriding. The influence of surface layers such as oxides on the nitriding process is discussed and demonstrated for stainless steel by a model experiment employing low-energy nitrogen implantation and real-time in situ surface diagnostics. It is shown that the surface oxide acts as a barrier for diffusive nitrogen transport. The evolution of the nitrogen profiles can be described reasonably well by diffusion under the influence of traps. Examples of nitrogen profiles obtained by plasma-immersion nitriding show depths of the nitrogen-rich phases of up to 50 mu m and 15 mu m in stainless steel at 380 degrees C and aluminium at 500 degrees C, respectively. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Ion beam analysis of nanoporous surfaces produced by He-implantation and oxidised by plasma-immersion ion-implantation
    Markwitz, A
    Johnson, PB
    Gilberd, PW
    Collins, GA
    Cohen, DD
    Dytlewski, N
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2000, 161 : 1048 - 1053
  • [22] Formation of Ge nanocrystals in a silicon dioxide layer using pulsed plasma-immersion ion implantation
    Kim, Young Min
    Jeong, Min-Kyu
    Park, Ki-Heung
    Jung, Sang-Goo
    Bae, Sung-Ho
    Lee, Jong-Ho
    MICROELECTRONIC ENGINEERING, 2009, 86 (10) : 2045 - 2048
  • [23] Fermi-level depinning of Ge surface using hydrogen plasma-immersion ion implantation
    Janardhanam, V.
    Jyothi, I.
    Pokhrel, Sameer
    Choi, Chel-Jong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [24] Phosphorus emitter engineering by plasma-immersion ion implantation for c-Si solar cells
    Michel, Thomas
    Le Perchec, Jerome
    Lanteme, Adeline
    Monna, Remi
    Torregrosa, Frank
    Roux, Laurent
    Commandre, Mireille
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 133 : 194 - 200
  • [25] Oxygen and Water Plasma-Immersion Ion Implantation of Copper into Titanium for Antibacterial Surfaces of Medical Implants
    Polak, Martin
    Ohl, Andreas
    Quaas, Marion
    Lukowski, Gerold
    Luethen, Frank
    Weltmann, Klaus-Dieter
    Schroeder, Karsten
    ADVANCED ENGINEERING MATERIALS, 2010, 12 (09) : B511 - B518
  • [26] Deposition of highly adhesive amorphous carbon films with the use of preliminary plasma-immersion ion implantation
    Bugaev, SP
    Oskomov, KV
    Sochugov, NS
    SURFACE & COATINGS TECHNOLOGY, 2002, 156 (1-3): : 311 - 316
  • [27] Plasma-immersion ion implantation surface oxidation on a cobalt-chromium alloy for biomedical applications
    Catanio Bortolan, Carolina
    Paternoster, Carlo
    Turgeon, Stephane
    Paoletti, Chiara
    Cabibbo, Marcello
    Lecis, Nora
    Mantovani, Diego
    BIOINTERPHASES, 2020, 15 (04)
  • [28] Hydrogenated amorphous carbon formation with plasma-immersion ion plating
    Xu, GC
    Hibino, Y
    Nishimura, Y
    Yatsuzuka, M
    SURFACE & COATINGS TECHNOLOGY, 2003, 169 : 299 - 302
  • [29] Plasma immersion ion implantation treatment of medical implants
    Mändl, S
    Krause, D
    Thorwarth, G
    Sader, R
    Zeilhofer, F
    Horch, HH
    Rauschenbach, B
    SURFACE & COATINGS TECHNOLOGY, 2001, 142 : 1046 - 1050
  • [30] Plasma-Immersion Formation of High-Intensity Ion Beams
    A. I. Ryabchikov
    P. S. Anan’in
    S. V. Dektyarev
    D. O. Sivin
    A. E. Shevelev
    Technical Physics Letters, 2017, 43 : 1051 - 1053