Support modification for improving the performance of MnOx-CeOy/γ-Al2O3 in selective catalytic reduction of NO by NH3

被引:104
|
作者
Qu, Long [1 ,2 ]
Li, Caiting [1 ,2 ]
Zeng, Guangming [1 ,2 ]
Zhang, Mengying [1 ,2 ]
Fu, Mengfan [1 ,2 ]
Ma, Jinfeng [1 ,2 ]
Zhan, Fuman [1 ,2 ]
Luo, Diqiang [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Minist Educ, Key Lab Environm Biol & Pollut Control, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
NO; gamma-Al2O3; ZrO2; Catalytic activity; Environment; LOW-TEMPERATURE SCR; MANGANESE OXIDE CATALYSTS; MIXED OXIDES; SUPERIOR CATALYST; NITRIC-OXIDE; MNOX-CEO2; CATALYST; SULFUR-DIOXIDE; AMMONIA; ADSORPTION; MNOX/TIO2;
D O I
10.1016/j.cej.2013.12.076
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The catalytic performances of catalysts with binary-oxides supports in selective catalytic reduction (SCR) of NO by NH3 were studied. Binary metal oxides supports gamma-Al2O3-SiO2, gamma-Al2O3-TiO2, and gamma-Al2O3-ZrO2 were prepared by hydrolyzation and coprecipitation methods, after that MnOx-CeOy was loaded using isovolumetric impregnation method. Characterizations for the samples involved N-2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2 temperature programmed reduction (H-2-TPR) and Fourier Transform infrared spectroscopy (FOR). In the SCR tests, MnOx-CeOy/gamma-Al2O3-ZrO2 (MCAZ) showed outstanding NO removal efficiency and could abate the deactivation brought by SO2 and H2O. Moreover, the fluctuation of gas hourly space velocity (GHSV) appeared only a bit of influence on the activity at middle temperature. The characterization results exhibited that MnOx-CeOy/gamma-Al2O3-ZrO2 owned bigger specific surface area and appropriate pore diameter, highly dispersed amorphous Mn2O3 as well as rational ratio of Ce4+/Ce3+. The H-2-TPR results presented the promotion of the activity was partially due to the stronger oxidation ability at low temperature. Through the FTIR analysis, and combining with the mechanism proposed by earlier research, it was supposed that the highly reactive nitrates on the surface favored the high NO conversion. Besides, FTIR revealed that the bidentate sulfates formed by adsorbed SO2 produced new Lewis acid sites which promoted NH3 adsorption and reduced the poisoning effect of SO2 and H2O. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [41] Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3
    Wang, Xiaomei
    Li, Xinyong
    Zhao, Qidong
    Sun, Wenbo
    Tade, Moses
    Liu, Shaomin
    CHEMICAL ENGINEERING JOURNAL, 2016, 288 : 216 - 222
  • [42] Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst
    Lei Zhigang
    Long Aibin
    Jia Meiru
    Liu Xueyi
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2010, 18 (05) : 721 - 729
  • [43] Synthesis, Characterization and Catalytic Activities of MnOx/TiO2 in NO Selective Catalytic Reduction with NH3
    Xie, Junlin
    Fu, Zhengbing
    He, Feng
    Chen, Junfu
    Fang, De
    Zhang, Yongming
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (08) : 4416 - 4418
  • [44] MnOx/CeO2-TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature
    Lee, Sang Moon
    Park, Kwang Hee
    Hong, Sung Chang
    CHEMICAL ENGINEERING JOURNAL, 2012, 195 : 323 - 331
  • [45] New insight on N2O formation over MnOx/TiO2 catalysts for selective catalytic reduction of NOx with NH3
    Zeng, Yiqing
    Lyu, Fengye
    Wang, Yanan
    Zhang, Shule
    Zhong, Qin
    Zhong, Zhaoxiang
    MOLECULAR CATALYSIS, 2022, 525
  • [46] Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3
    Liu Qingya
    Liu Zhenyu
    Li Chengyue
    CHINESE JOURNAL OF CATALYSIS, 2006, 27 (07) : 636 - 646
  • [47] The enhanced performance of ceria by HF treatment for selective catalytic reduction of NO with NH3
    Yang, Ning-zhi
    Guo, Rui-tang
    Tian, Yuan
    Pan, Wei-guo
    Chen, Qi-lin
    Wang, Qing-shan
    Lu, Chen-zi
    Wang, Shu-xian
    FUEL, 2016, 179 : 305 - 311
  • [48] Performance and Kinetics Studies on Selective Catalytic Reduction of NOx with NH3 over MnOx-WO3/TiO2 Catalyst
    Wu Bi-jun
    Xiao Ping
    Liu Xiao-qin
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2010, 26 (06) : 1002 - 1006
  • [49] Gd-modified MnOx for the selective catalytic reduction of NO by NH3: The promoting effect of Gd on the catalytic performance and sulfur resistance
    Fan, Zhaoyang
    Shi, Jian-Wen
    Gao, Chen
    Gao, Ge
    Wang, Baorui
    Wang, Yao
    He, Chi
    Niu, Chunming
    CHEMICAL ENGINEERING JOURNAL, 2018, 348 : 820 - 830
  • [50] Molybdenum modified CeAlOx catalyst for the selective catalytic reduction of NO with NH3
    Li, Xiaoliang
    Li, Yonghong
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2014, 386 : 69 - 77