Changing and Unchanging 2-Rainbow Independent Domination

被引:1
作者
Shi, Xiaolong [1 ]
Wu, Pu [1 ]
Shao, Zehui [1 ]
Samodivkin, Vladimir [2 ]
Sheikholeslami, Seyed Mahmoud [3 ]
Soroudi, M. [3 ]
Wang, Shaohui [4 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Architecture Civil Engn & Geodesy, Dept Math, Sofia, Bulgaria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USA
来源
IEEE ACCESS | 2019年 / 7卷
关键词
2-rainbow independent domination number; 2-rainbow independent domination stable graph; tree; PETERSEN GRAPHS P(N; NUMBER; PRODUCT;
D O I
10.1109/ACCESS.2019.2919976
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Domination number is of practical interest in several theoretical and applied scenes. In the problem of wireless networking, the dominating idea is used to deduce an efficient route within the ad-hoc mobilenetworks. It has also been used for the summarization of documents and making a design of secure web-systems for electrical recursive grids. In this paper, we explore an important class of domination numbers, which is the 2-rainbow independent dominating function (2RiDF) on graphs. The minimum weight of a 2RiDF on a graph G is called the 2-rainbow independent domination number of G. A graph G is 2-rainbow independent domination stable if the 2-rainbow independent domination number of G remains unchanged under removal of any vertex. As a result, we characterize 2-rainbow independent domination stable tree-networks and study the effect of edge removal on 2-rainbow independent domination number in trees.
引用
收藏
页码:72604 / 72612
页数:9
相关论文
共 33 条
  • [1] Alanko S, 2011, ELECTRON J COMB, V18
  • [2] Arumugam S., 1998, J. Indian Math. Soc., New Ser., V65, P31
  • [3] Complexity of k-rainbow independent domination and some results on the lexicographic product of graphs
    Brezovnik, Simon
    Sumenjak, Tadeja Kraner
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 214 - 220
  • [4] On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes
    Castro, Aline
    Klavzar, Sandi
    Mollard, Michel
    Rho, Yoomi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2655 - 2660
  • [5] LOWER BOUNDS ON THE ROMAN AND INDEPENDENT ROMAN DOMINATION NUMBERS
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (01) : 65 - 72
  • [6] A NOTE ON THE INDEPENDENT ROMAN DOMINATION IN UNICYCLIC GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    [J]. OPUSCULA MATHEMATICA, 2012, 32 (04) : 715 - 718
  • [7] Cohen G., 1997, Covering Codes
  • [8] Crevals S, 2018, UTILITAS MATHEMATICA, V106, P289
  • [9] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [10] El-Zahar MH, 2007, ARS COMBINATORIA, V84, P51