Compensating Dynamics of Impedance Haptic Devices Using Neural Networks

被引:2
|
作者
Melinte, Octavian [1 ]
Munteanu, Radu [2 ]
Gal, Ioan Alexandru [1 ]
Vladareanu, Luige [1 ]
机构
[1] Romanian Acad, Inst Solid Mech, Bucharest, Romania
[2] Tech Univ, Cluj Napoca, Romania
来源
2013 8TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE) | 2013年
关键词
Robot control; haptic interface; intelligent control methods; Neural Networks;
D O I
10.1109/ATEE.2013.6563539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a Neural Network approach to compensate dynamic terms, friction force in particular, of a four degree of freedom haptic device manipulator similar to commercial one's that are on the market, which is controlled in impedance. The friction force model is analyzed using a general compensation method after which a trained Multi-Layer Neural Network is introduced in order to obtain a more accurate friction approximation for cancelling out this term from dynamics so that the movement of the device feels free and unconstraint.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Haptic interfaces for compensating dynamics of rescue walking robots
    Melinte, Octavian
    Vladareanu, Luige
    Munteanu, Radu A.
    Yu, Hongnian
    INTERNATIONAL CONFERENCE ON COMMUNICATIONS, MANAGEMENT, AND INFORMATION TECHNOLOGY (ICCMIT'2015), 2015, 65 : 218 - 224
  • [2] An iterative algorithm for electrical impedance imaging using neural networks
    Nejatali, A
    Ciric, IR
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 2940 - 2943
  • [3] Classification of stroke using neural networks in electrical impedance tomography
    Agnelli, J. P.
    Col, A.
    Lassas, M.
    Murthy, R.
    Santacesaria, M.
    Siltanen, S.
    INVERSE PROBLEMS, 2020, 36 (11)
  • [4] Simultaneous Learning of Robot Impedance Parameters Using Neural Networks
    Terauchi, Mutsuhiro
    Tanaka, Yoshiyuki
    Sakaguchi, Seishiro
    Bu, Nan
    Tsuji, Toshio
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2007, 19 (01) : 106 - 113
  • [5] A compensating scheme for robot tracking based on neural networks
    Feng, G
    ROBOTICS AND AUTONOMOUS SYSTEMS, 1995, 15 (03) : 199 - 206
  • [6] Calculations of characteristics of microwave devices using artificial neural networks
    Katkevicius, Andrius
    Malisauskas, Vacius
    Plonis, Darius
    Serackis, Arturas
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (1A): : 281 - 285
  • [7] Automating the Interactions among IoT Devices using Neural Networks
    Rojo, Javier
    Flores-Martin, Daniel
    Garcia-Alonso, Jose
    Murillo, Juan M.
    Berrocal, Javier
    2020 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2020,
  • [8] Identification of Die Thermal Dynamics Using Neural Networks
    Seo, Jaho
    Khajepour, Amir
    Huissoon, Jan P.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (06):
  • [9] NONLINEAR IDENTIFICATION OF PROCESS DYNAMICS USING NEURAL NETWORKS
    PARLOS, AG
    ATIYA, AF
    CHONG, KT
    TSAI, WK
    NUCLEAR TECHNOLOGY, 1992, 97 (01) : 79 - 96
  • [10] MODELING OF THERMAL DYNAMICS OF DIES USING NEURAL NETWORKS
    Seo, Jaho
    Khajepour, Amir
    Huissoon, Jan P.
    PROCEEDINGS OF THE ASME INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, VOL 1, 2009, : 445 - 454