Stability and periodic character of a rational third order difference equation

被引:21
作者
Shojaei, M. [1 ]
Saadati, R. [1 ,2 ]
Adibi, H. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran 15914, Iran
[2] Univ Shomal, Fac Sci, Amol 731, Iran
关键词
s1j; GLOBAL ATTRACTIVITY; X(N+1);
D O I
10.1016/j.chaos.2007.06.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The general solution, the local and global asymptotic stability of equilibrium points and period three cycles of the third order rational difference equation x(n+1) = alpha x(n-2)/beta + gamma x(n-2)x(n-1)x(n), n = 0, 1,... are studied in this paper. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1203 / 1209
页数:7
相关论文
共 17 条
[1]   Global stability of yn+1=A+yn/yn-k [J].
Abu-Saris, RM ;
DeVault, R .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :173-178
[2]   El Naschie's self-organization of the patterns in a plasma discharge: Experimental and theoretical results [J].
Agop, M. ;
Rusu, Ioana .
CHAOS SOLITONS & FRACTALS, 2007, 34 (02) :172-186
[3]   On the recursive sequence xn+1=α+xn-1/xn [J].
Amleh, AM ;
Grove, EA ;
Ladas, G ;
Georgiou, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) :790-798
[4]  
[Anonymous], 2013, Nonlinear Difference Equations: Theory with Applications to Social Science Models
[5]   On the positive solutions of the difference equation xn+1 = (xn-1)/(1+xnxn-1) [J].
Çinar, C .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 150 (01) :21-24
[6]   On the recursive sequence xn+1=α+βxn/Bxn+Cxn-1 [J].
Cunningham, K ;
Kulenovic, MRS ;
Ladas, G ;
Valicenti, SV .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (07) :4603-4614
[7]   On the recursive sequence xn+1 = α + β xn+ γ xn -1/Bxn + Cxn -1 [J].
El-Afifi, MM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (03) :617-628
[8]   On the global attractivity and the periodic character of some difference equations [J].
El-Metwally, H ;
Grove, EA ;
Ladas, G ;
Voulov, HD .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2001, 7 (06) :837-850
[9]   On the recursive sequences xn+1 = -αxn-1β±xn [J].
El-Owaidy, HM ;
Ahmed, AM ;
Mousa, MS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :747-753
[10]  
Elaydi S., 2000, DISCRETE CHAOS