Bridge Graphs and Their Topological Indices

被引:0
作者
Mogharrab, Mojgan [1 ]
Gutman, Ivan [2 ]
机构
[1] Persian Gulf Univ, Dept Math, Bushehr 75169, Iran
[2] Univ Kragujevac, Fac Sci, Kragujevac 34000, Serbia
关键词
ECCENTRIC CONNECTIVITY INDEX; DESCRIPTOR; PI;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G(1) = (V-1, E-1) and G(2) = (V-2, E-2) be two graphs with disjoint vertex sets V-1 and V-2. Let u(1) is an element of V-1 and u(2) is an element of V-2. The bridge graph of these two graphs with respect to u(1) and u(2) is the graph whose vertex set is V-1 boolean OR V-2 and edge set E-1 boolean OR E2U{e = u(1)u(2)}, where e = u(1)u(2) is a new edge. In this paper we calculate the Szeged, edge-Szeged, PI, vertex-PI and eccentric connectivity indices of bridge graphs.
引用
收藏
页码:579 / 587
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2008, Handbook of molecular descriptors
[2]  
Balaban A.T., 1976, Chemical Applications of Graph Theory
[3]  
Gutman I., 1998, GRAPH THEORY NOTES, V34, P37
[4]  
Gutman I., 1986, Mathematical concepts in organic chemistry, DOI 10.1515/9783112570180
[5]  
Gutman I., 1994, Graph Theory Notes N. Y., V27, P9
[6]  
Gutman I, 2008, CROAT CHEM ACTA, V81, P263
[7]  
Khadikar PV, 2010, IRAN J MATH CHEM, V1, P7
[8]  
Khadikar PV, 2000, NATL ACAD SCI LETT, V23, P113
[9]   Vertex and edge PI indices of Cartesian product graphs [J].
Khalifeh, M. H. ;
Yousefi-Azari, H. ;
Ashrafi, A. R. .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (10) :1780-1789
[10]  
Mogharrab M, 2010, OPTOELECTRON ADV MAT, V4, P1866