An information aware event-triggered scheme for particle filter based remote state estimation

被引:44
作者
Li, Wenshuo [1 ]
Wang, Zidong [2 ,3 ]
Liu, Qinyuan [4 ]
Guo, Lei [1 ]
机构
[1] Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Shandong, Peoples R China
[3] Brunel Univ London, Dept Comp Sci, Uxbridge UB8 3PH, Middx, England
[4] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote state estimation; Non-Gaussian system; Particle filtering; Event-based transmission; Sensor-to-estimator communication;
D O I
10.1016/j.automatica.2019.01.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The remote state estimation problem is considered for general non-Gaussian systems. The estimator runs particle filtering algorithm to track the non-Gaussian probability density function (PDF) of the target state. We are concerned with the reduction of sensor-to-estimator communication while maintaining acceptable estimation accuracy. For this purpose, a novel event-based transmission scheme is proposed where the Kullback-Leibler divergence is used to identify informative measurements. We develop a two-step approximation procedure to obtain a parametric form for the event generator function, thereby enabling each sensor to quantify the informativeness of its current measurement without running a copy of the estimator. Furthermore, a Monte Carlo method is proposed to evaluate the likelihood function of the set-valued measurements. Simulation results demonstrate the effectiveness of our scheme, especially when the predictive PDF of the measurement is strongly non-Gaussian. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 27 条
[1]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[2]  
Åström KJ, 2002, IEEE DECIS CONTR P, P2011, DOI 10.1109/CDC.2002.1184824
[3]  
Beard M, 2015, 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P937
[4]   An overview of existing methods and recent advances in sequential Monte Carlo [J].
Cappe, Olivier ;
Godsill, Simon J. ;
Moulines, Eric .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :899-924
[5]   Stochastic Event-Triggered Sensor Schedule for Remote State Estimation [J].
Han, Duo ;
Mo, Yilin ;
Wu, Junfeng ;
Weerakkody, Sean ;
Sinopoli, Bruno ;
Shi, Ling .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (10) :2661-2675
[6]  
hiplunkar N., 2016, P 6 INT C ADV COMP C, P6
[7]   The Cauchy-Schwarz Divergence for Poisson Point Processes [J].
Hung Gia Hoang ;
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Mahler, Ronald .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (08) :4475-4485
[8]  
Kohvakka M., 2006, P 3 ACM INT WORKSHOP, P48
[9]  
Lee S, 2013, IEEE DECIS CONTR P, P6998, DOI 10.1109/CDC.2013.6760998
[10]   On Kalman-Consensus Filtering With Random Link Failures Over Sensor Networks [J].
Liu, Qinyuan ;
Wang, Zidong ;
He, Xiao ;
Zhou, D. H. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) :2701-2708