Occlusion Patterns for Object Class Detection

被引:55
作者
Pepik, Bojan [1 ]
Stark, Michael [1 ,2 ]
Gehler, Peter [3 ]
Schiele, Bernt [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
[2] Stanford Univ, Stanford, CA 94305 USA
[3] Max Planck Inst Intelligent Syst, Stuttgart, Germany
来源
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2013年
关键词
D O I
10.1109/CVPR.2013.422
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion remains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of methods that treat occlusion as just another source of noise instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistication. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid further developments in tackling the occlusion challenge.
引用
收藏
页码:3286 / 3293
页数:8
相关论文
共 24 条
[1]  
Andriluka M, 2009, PROC CVPR IEEE, P1014, DOI 10.1109/CVPRW.2009.5206754
[2]  
[Anonymous], 2011, CVPR
[3]  
[Anonymous], BMVC
[4]  
Bao SidYingze., 2011, CVPR
[5]   Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations [J].
Bourdev, Lubomir ;
Malik, Jitendra .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :1365-1372
[6]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[7]  
Eichner M, 2010, LECT NOTES COMPUT SC, V6311, P228, DOI 10.1007/978-3-642-15549-9_17
[8]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[9]  
Felzenszwalb P. F., 2010, IEEE transactions on pattern analysis and machine intelligence, V32, P1627, DOI [DOI 10.1109/TPAMI.2009.167, 10.1109/TPAMI.2009.167]
[10]  
Gao TS, 2011, PROC CVPR IEEE, P1361, DOI 10.1109/CVPR.2011.5995623