The TSCR method for precision estimation of ill-posed mixed additive and multiplicative random error model

被引:2
作者
Wang, Leyang [1 ,2 ]
Chen, Tao [1 ,3 ]
Zou, Chuanyi [3 ]
机构
[1] East China Univ Technol, Fac Geomat, Nanchang, Peoples R China
[2] Minist Nat Resources, Key Lab Mine Environm Monitoring & Improving Poyan, Nanchang, Peoples R China
[3] Wuhan Univ, Sch Geodesy & Geomat, Dept Geophys, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Ill-posed mixed additive and multiplicative random error model; Parameter estimation; Precision estimation; Tikhonov regularization iterative; TSCR method; VARIANCE COMPONENT ESTIMATION; ADJUSTMENT; LIDAR; REGULARIZATION; ACCURACY; SPECKLE;
D O I
10.1080/03610918.2022.2154801
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating the precision information of parameter estimation can fully reflect the quality of parameter estimation. In this paper, we first derive the weighted least-square regularization iterative (WLSRI) solution and mean square error (MSE) matrix of the ill-posed mixed additive and multiplicative random error (MAMRE) model. Then, considering that the gradual iterative process of the WLSRI solution will affect the final parameter estimation and precision information and further lead to a complex nonlinear function relationship, the traditional Taylor expansion approximate function method cannot be used to solve. Therefore, this paper introduces the derivative-free third-degree spherical-radial cubature rule (TSCR) method for precision estimation of the ill-posed MAMRE model, which generates a series of samples with the same weight by the fixed sampling strategy and further uses the WLSRI method to calculate. Finally, the experiment research and analysis results illustrate that compared with the existing solutions without considering the ill-posed problem, the WLSRI method is applicable and can obtain reasonable parameter estimation and precision information in solving the ill-posed MAMRE model; while the TSCR method can obtain more accurate parameter estimation and precision information than the WLSRI method, which enriches the theoretical research on the precision estimation problem of ill-posed MAMRE model.
引用
收藏
页码:4581 / 4595
页数:15
相关论文
共 41 条
[1]   Cubature Kalman smoothers [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
AUTOMATICA, 2011, 47 (10) :2245-2250
[2]   Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Hurd, Thomas R. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :4977-4993
[3]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[4]  
BOX MJ, 1971, J ROY STAT SOC B, V33, P171
[5]  
Cai J., 2004, HOT MAR S MATH GEOD, V127, P309, DOI 10.1007/978-3-662-10735-5_41
[6]  
Cui X.Z., 2009, GEN SURVEYING ADJUST
[7]   Implication of adaptive smoothness constraint and Helmert variance component estimation in seismic slip inversion [J].
Fan, Qingbiao ;
Xu, Caijun ;
Yi, Lei ;
Liu, Yang ;
Wen, Yangmao ;
Yin, Zhi .
JOURNAL OF GEODESY, 2017, 91 (10) :1163-1177
[8]   EVIDENCE FOR SPECKLE EFFECTS ON PULSED CO2 LIDAR SIGNAL RETURNS FROM REMOTE TARGETS [J].
FLAMANT, PH ;
MENZIES, RT ;
KAVAYA, MJ .
APPLIED OPTICS, 1984, 23 (09) :1412-1417
[9]   ANALYSIS OF DISCRETE ILL-POSED PROBLEMS BY MEANS OF THE L-CURVE [J].
HANSEN, PC .
SIAM REVIEW, 1992, 34 (04) :561-580
[10]   THE USE OF THE L-CURVE IN THE REGULARIZATION OF DISCRETE III-POSED PROBLEMS [J].
HANSEN, PC ;
OLEARY, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06) :1487-1503