Empirical likelihood test for high dimensional linear models

被引:6
|
作者
Peng, Liang [1 ]
Qi, Yongcheng [2 ]
Wang, Ruodu [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[3] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Empirical likelihood; High-dimensional data; Hypothesis test; Linear model; P-REGRESSION PARAMETERS; ASYMPTOTIC-BEHAVIOR; VARIABLE SELECTION; M-ESTIMATORS; LASSO; P2/N;
D O I
10.1016/j.spl.2013.12.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an empirical likelihood method to test whether the coefficients in a possibly high-dimensional linear model are equal to given values. The asymptotic distribution of the test statistic is independent of the number of covariates in the linear model. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [31] Empirical likelihood test for the equality of several high-dimensional covariance matrices
    Liao, Guili
    Peng, Liang
    Zhang, Rongmao
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2775 - 2792
  • [32] Empirical likelihood test for the equality of several high-dimensional covariance matrices
    Guili Liao
    Liang Peng
    Rongmao Zhang
    Science China Mathematics, 2021, 64 : 2775 - 2792
  • [33] Empirical likelihood for linear and log-linear INGARCH models
    Zhu, Fukang
    Wang, Dehui
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 150 - 160
  • [34] A NEW SCOPE OF PENALIZED EMPIRICAL LIKELIHOOD WITH HIGH-DIMENSIONAL ESTIMATING EQUATIONS
    Chang, Jinyuan
    Tang, Cheng Yong
    Wu, Tong Tong
    ANNALS OF STATISTICS, 2018, 46 (6B) : 3185 - 3216
  • [35] Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors
    Fan, Guo-Liang
    Liang, Han-Ying
    Shen, Yu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 147 : 183 - 201
  • [36] Empirical likelihood method for complete independence test on high-dimensional data
    Qi, Yongcheng
    Zhou, Yingchao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (11) : 2386 - 2402
  • [37] Empirical likelihood for linear models under m-dependent errors
    Yongsong Q.
    Bo J.
    Yufang L.
    Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (2) : 205 - 212
  • [38] EMPIRICAL LIKELIHOOD FOR LINEAR MODELS UNDER m-DEPENDENT ERRORS
    Qin Yongsong* Jiang Bo Li Yufang Dept.of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2005, (02) : 205 - 212
  • [39] Empirical likelihood for partially linear proportional hazards models with growing dimensions
    Tang, Xingyu
    Li, Jianbo
    Lian, Heng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 : 22 - 32
  • [40] Empirical likelihood based inference for generalized additive partial linear models
    Yu, Zhuoxi
    Yang, Kai
    Parmar, Milan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 105 - 112