Empirical likelihood test for high dimensional linear models

被引:6
|
作者
Peng, Liang [1 ]
Qi, Yongcheng [2 ]
Wang, Ruodu [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[3] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Empirical likelihood; High-dimensional data; Hypothesis test; Linear model; P-REGRESSION PARAMETERS; ASYMPTOTIC-BEHAVIOR; VARIABLE SELECTION; M-ESTIMATORS; LASSO; P2/N;
D O I
10.1016/j.spl.2013.12.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an empirical likelihood method to test whether the coefficients in a possibly high-dimensional linear model are equal to given values. The asymptotic distribution of the test statistic is independent of the number of covariates in the linear model. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [11] On empirical likelihood for linear models with missing responses
    Qin, Yongsong
    Lei, Qingzhu
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3399 - 3408
  • [12] Empirical Likelihood for Linear Models Under Linear Process Errors
    Qin, Yongsong
    Lei, Qingzhu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (15) : 3218 - 3233
  • [13] Empirical likelihood test for high-dimensional two-sample model
    Ciuperca, Gabriela
    Salloum, Zahraa
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 178 : 37 - 60
  • [14] Empirical likelihood for partial linear models
    Wang, QH
    Jing, BY
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2003, 55 (03) : 585 - 595
  • [15] Empirical likelihood for partial linear models
    Qi-Hua Wang
    Bing-Yi Jing
    Annals of the Institute of Statistical Mathematics, 2003, 55 : 585 - 595
  • [16] Empirical likelihood for partially linear models
    Shi, J
    Lau, TS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 72 (01) : 132 - 148
  • [17] Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data
    Fang, Jianglin
    Liu, Wanrong
    Lu, Xuewen
    METRIKA, 2018, 81 (03) : 255 - 281
  • [18] Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data
    Jianglin Fang
    Wanrong Liu
    Xuewen Lu
    Metrika, 2018, 81 : 255 - 281
  • [19] Empirical likelihood for high-dimensional partially linear model with martingale difference errors
    Fan, Guo-Liang
    Jiang, Zhi-Qiang
    Wang, Jiang-Feng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11228 - 11242
  • [20] JACKKNIFE EMPIRICAL LIKELIHOOD TEST FOR EQUALITY OF TWO HIGH DIMENSIONAL MEANS
    Wang, Ruodu
    Peng, Liang
    Qi, Yongcheng
    STATISTICA SINICA, 2013, 23 (02) : 667 - 690