Empirical likelihood test for high dimensional linear models

被引:6
|
作者
Peng, Liang [1 ]
Qi, Yongcheng [2 ]
Wang, Ruodu [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[3] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Empirical likelihood; High-dimensional data; Hypothesis test; Linear model; P-REGRESSION PARAMETERS; ASYMPTOTIC-BEHAVIOR; VARIABLE SELECTION; M-ESTIMATORS; LASSO; P2/N;
D O I
10.1016/j.spl.2013.12.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an empirical likelihood method to test whether the coefficients in a possibly high-dimensional linear model are equal to given values. The asymptotic distribution of the test statistic is independent of the number of covariates in the linear model. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [1] EMPIRICAL LIKELIHOOD RATIO TESTS FOR COEFFICIENTS IN HIGH-DIMENSIONAL HETEROSCEDASTIC LINEAR MODELS
    Wang, Honglang
    Zhong, Ping-Shou
    Cui, Yuehua
    STATISTICA SINICA, 2018, 28 (04) : 2409 - 2433
  • [2] Penalized empirical likelihood for high-dimensional generalized linear models
    Chen, Xia
    Mao, Liyue
    STATISTICS AND ITS INTERFACE, 2021, 14 (02) : 83 - 94
  • [3] Empirical likelihood for high-dimensional linear regression models
    Guo, Hong
    Zou, Changliang
    Wang, Zhaojun
    Chen, Bin
    METRIKA, 2014, 77 (07) : 921 - 945
  • [4] Empirical likelihood for high-dimensional linear regression models
    Hong Guo
    Changliang Zou
    Zhaojun Wang
    Bin Chen
    Metrika, 2014, 77 : 921 - 945
  • [5] Empirical likelihood for high-dimensional partially functional linear model
    Jiang, Zhiqiang
    Huang, Zhensheng
    Fan, Guoliang
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [6] Penalized high-dimensional empirical likelihood
    Tang, Cheng Yong
    Leng, Chenlei
    BIOMETRIKA, 2010, 97 (04) : 905 - 919
  • [7] Decorrelated empirical likelihood for generalized linear models with high-dimensional longitudinal data
    Geng, Shuli
    Zhang, Lixin
    STATISTICS & PROBABILITY LETTERS, 2024, 211
  • [8] Penalized empirical likelihood for high-dimensional generalized linear models with longitudinal data
    Chen, Xia
    Tan, Xiaoyan
    Yan, Li
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (10) : 1515 - 1531
  • [9] Empirical likelihood for linear models with missing responses
    Xue, Liugen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (07) : 1353 - 1366
  • [10] Quasi-likelihood Bridge estimators for high-dimensional generalized linear models
    Cui, Xiaohua
    Chen, Xia
    Yan, Li
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 8190 - 8204