Addendum to: A hybrid conjugate gradient method based on a quadratic relaxation of Dai-Yuan hybrid conjugate gradient parameter

被引:1
|
作者
Babaie-Kafaki, Saman [1 ,2 ]
机构
[1] Semnan Univ, Dept Math, Fac Math Stat & Comp Sci, Semnan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
conjugacy condition; unconstrained optimization; conjugate gradient method;
D O I
10.1080/02331934.2012.718347
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Here, necessary corrections on computing the hybridization parameter of the quadratic hybrid conjugate gradient method of Babaie-Kafaki [S. Babaie-Kafaki, A hybrid conjugate gradient method based on a quadratic relaxation of Dai-Yuan hybrid conjugate gradient parameter, Optimization, DOI: 10.1080/02331934.2011.611512, 2011] are stated in brief. Throughout, we use the same notations and equation numbers as in Babaie-Kafaki (2011).
引用
收藏
页码:657 / 659
页数:3
相关论文
共 50 条
  • [31] A Dai–Yuan-type Riemannian conjugate gradient method with the weak Wolfe conditions
    Hiroyuki Sato
    Computational Optimization and Applications, 2016, 64 : 101 - 118
  • [33] A Dai-Yuan conjugate gradient algorithm of linear equation constrained optimization approach for optimal robust controller of bipedal robots
    Wang, M.
    Sun, Z. B.
    Zhang, B. C.
    Pang, Z. X.
    Jiang, D. W.
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (01)
  • [34] Dai–Liao extensions of a descent hybrid nonlinear conjugate gradient method with application in signal processing
    Zohre Aminifard
    Saman Babaie-Kafaki
    Numerical Algorithms, 2022, 89 : 1369 - 1387
  • [35] The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices
    Babaie-Kafaki, Saman
    Ghanbari, Reza
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 234 (03) : 625 - 630
  • [36] A New Dai-Liao Conjugate Gradient Method with Optimal Parameter Choice
    Zhang, Keke
    Liu, Hongwei
    Liu, Zexian
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (02) : 194 - 215
  • [37] A sufficient descent Dai–Yuan type nonlinear conjugate gradient method for unconstrained optimization problems
    Xian-zhen Jiang
    Jin-bao Jian
    Nonlinear Dynamics, 2013, 72 : 101 - 112
  • [38] A Novel Value for the Parameter in the Dai-Liao-Type Conjugate Gradient Method
    Ivanov, Branislav
    Stanimirovic, Predrag S.
    Shaini, Bilall, I
    Ahmad, Hijaz
    Wang, Miao-Kun
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [39] An efficient hybrid conjugate gradient method for unconstrained optimization
    Ibrahim, Abdulkarim Hassan
    Kumam, Poom
    Kamandi, Ahmad
    Abubakar, Auwal Bala
    OPTIMIZATION METHODS & SOFTWARE, 2022, 37 (04): : 1370 - 1383
  • [40] A nonmonotone hybrid conjugate gradient method for unconstrained optimization
    Wenyu Li
    Yueting Yang
    Journal of Inequalities and Applications, 2015