Optimal parameters of the generalized symmetric SOR method for augmented systems

被引:28
作者
Chao, Zhen [1 ]
Zhang, Naimin [1 ]
Lu, Yunzeng [1 ]
机构
[1] Wenzhou Univ, Sch Math & Informat Sci, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal parameters; Generalized symmetric SOR method; Augmented system; Convergence; SADDLE-POINT PROBLEMS; SUCCESSIVE OVERRELAXATION METHODS; HERMITIAN SPLITTING METHODS; LINEAR-SYSTEMS; UZAWA METHODS; INEXACT; PRECONDITIONERS; CONVERGENCE; EQUATIONS; MATRICES;
D O I
10.1016/j.cam.2014.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the augmented system of linear equations, Zhang and Lu (2008) recently studied the generalized symmetric SOR method (GSSOR) with two parameters. In this note, the optimal parameters of the GSSOR method are obtained, and numerical examples are given to illustrate the corresponding results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:52 / 60
页数:9
相关论文
共 28 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]   On parameterized inexact Uzawa methods for generalized saddle point problems [J].
Bai, Zhong-Zhi ;
Wang, Zeng-Qi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2900-2932
[3]  
Bai ZZ, 2007, IMA J NUMER ANAL, V27, P1, DOI [10.1093/imanum/dr1017, 10.1093/imanum/drl017]
[4]   Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices [J].
Bai, Zhong-Zhi ;
Golub, Gene H. ;
Li, Chi-Kwong .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) :583-603
[5]  
Bai ZZ, 2006, MATH COMPUT, V75, P791, DOI 10.1090/S0025-5718-05-01801-6
[6]   On generalized successive overrelaxation methods for augmented linear systems [J].
Bai, ZZ ;
Parlett, BN ;
Wang, ZQ .
NUMERISCHE MATHEMATIK, 2005, 102 (01) :1-38
[7]   Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Pan, JY .
NUMERISCHE MATHEMATIK, 2004, 98 (01) :1-32
[8]   Restrictively preconditioned conjugate gradient methods for systems of linear equations [J].
Bai, ZZ ;
Li, GQ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) :561-580
[9]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[10]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212