Core-shell structured multiwall carbon nanotube-graphene oxide nanoribbon and its N-doped variant as anodes for high-power microbial fuel cells

被引:25
作者
Liu, Yu-Chen [1 ]
Hung, Yu-Hsuan [1 ]
Liu, Shih-Fu [1 ]
Guo, Chun-Han [1 ]
Liu, Tzu-Yin [2 ,3 ]
Sun, Chia-Liang [4 ,5 ,6 ]
Chen, Han-Yi [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Mat Sci & Engn, 101,Sec 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, 101,Sec 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[3] Natl Tsing Hua Univ, Dept Life Sci, 101,Sec 2,Kuang Fu Rd, Hsinchu 30013, Taiwan
[4] Chang Gung Univ, Dept Chem & Mat Engn, Taoyuan 33302, Taiwan
[5] Chang Gung Univ, Green Technol Res Ctr, Taoyuan 33302, Taiwan
[6] Linkou Chang Gung Mem Hosp, Dept Neurosurg, Taoyuan 33305, Taiwan
来源
SUSTAINABLE ENERGY & FUELS | 2020年 / 4卷 / 10期
关键词
ELECTROCHEMICAL DETECTION; ELECTRICITY-GENERATION; BIOFILM FORMATION; POROUS CARBON; CLOTH ANODES; AIR-CATHODE; PORE-SIZE; PERFORMANCE; NITROGEN; COMPOSITE;
D O I
10.1039/d0se00673d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel core-shell structured multiwall carbon nanotube-graphene oxide nanoribbon (MWCNT@GONR) and a nitrogen-doped MWCNT@GONR (N-MWCNT@GONR) were synthesized through a microwave energy-assisted unzipping process and utilized as anodes forEscherichia coli-based microbial fuel cells (MFCs) for the first time. To evaluate the electrochemical performance of the MFCs, we measured the electrochemical activity and charge transfer in MFCs with MWCNT, N-MWCNT@GONR, and MWCNT@GONR anodes. Compared to the MFC with the MWCNT anode (970 mW m(-2)), the MFCs with the N-MWCNT@GONR and MWCNT@GONR anodes exhibit higher power densities of up to 3444 and 3291 mW m(-2), respectively. Both the oxygen and nitrogen functional groups on the MWCNT@GONR and N-MWCNT@GONR contribute to good biocompatibility, which greatly enhances the charge transfer efficiency and biofilm formation on the anode surface. Our results suggest that MWCNT@GONR and N-MWCNT@GONR are outstanding and promising anode materials for MFCs.
引用
收藏
页码:5339 / 5351
页数:13
相关论文
共 75 条
[21]   Mini-review: Anode modification for improved performance of microbial fuel cell [J].
Hindatu, Y. ;
Annuar, M. S. M. ;
Gumel, A. M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 :236-248
[22]   Enhanced Performance of a Microbial Fuel Cell Using CNT/MnO2 Nanocomposite as a Bioanode Material [J].
Kalathil, Shafeer ;
Van Hoa Nguyen ;
Shim, Jae-Jin ;
Khan, Mohammad Mansoob ;
Lee, Jintae ;
Cho, Moo Hwan .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (11) :7712-7716
[23]   Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry [J].
Katuri, Krishna P. ;
Kavanagh, Paul ;
Rengaraj, Saravanan ;
Leech, Donal .
CHEMICAL COMMUNICATIONS, 2010, 46 (26) :4758-4760
[24]   Carbon Nanofiber-skinned Three Dimensional Ni/Carbon Micropillars: High Performance Electrodes of a Microbial Fuel Cell [J].
Khare, Prateek ;
Ramkumar, Janakranjan ;
Verma, Nishith .
ELECTROCHIMICA ACTA, 2016, 219 :88-98
[25]   Nitrogen doped graphene sheets as metal free anode catalysts for the high performance microbial fuel cells [J].
Kirubaharan, C. Joseph ;
Santhakumar, Kannappan ;
Kumar, G. Gnana ;
Senthilkumar, N. ;
Jang, Jae-Hyung .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (38) :13061-13070
[26]   Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination [J].
Kong, Weiqing ;
Duan, Xidong ;
Ge, Yongjie ;
Liu, Hongtao ;
Hu, Jiawen ;
Duan, Xiangfeng .
NANO RESEARCH, 2016, 9 (08) :2458-2466
[27]   Conductive Polymer/Graphene Supported Platinum Nanoparticles as Anode Catalysts for the Extended Power Generation of Microbial Fuel Cells [J].
Kumar, Georgepeter Gnana ;
Kirubaharan, Christopher Joseph ;
Udhayakumar, Subrarnani ;
Karthikeyan, Chandrasekaran ;
Nahm, Kee Suk .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (43) :16883-16893
[28]   The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study [J].
Kundu, Shankhamala ;
Xia, Wei ;
Busser, Wilma ;
Becker, Michael ;
Schmidt, Diedrich A. ;
Havenith, Martina ;
Muhler, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (17) :4351-4359
[29]   Self-aligned graphene oxide nanoribbon stack with gradient bandgap for visible-light photodetection [J].
Lan, Yann-Wen ;
Torres, Carlos M., Jr. ;
Zhu, Xiaodan ;
Sun, Chia-Liang ;
Zhu, Shuanglin ;
Chen, Chii-Dong ;
Wang, Kang L. .
NANO ENERGY, 2016, 27 :114-120
[30]   The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density [J].
Li, Fei ;
Wang, Dong ;
Liu, Qiongzhen ;
Wang, Bo ;
Zhong, Weibing ;
Li, Mufang ;
Liu, Ke ;
Lu, Zhentan ;
Jiang, Haiqing ;
Zhao, Qinghua ;
Xiong, Chuanxi .
JOURNAL OF POWER SOURCES, 2019, 412 :514-519