Galerkin methods for a semilinear parabolic problem with nonlocal boundary conditions

被引:39
作者
Fairweather, G
LopezMarcos, JC
机构
[1] COLORADO SCH MINES,DEPT MATH & COMP SCI,GOLDEN,CO 80401
[2] UNIV VALLADOLID,FAC CIENCIAS,DEPT MATEMAT APLICADA & COMPUTAC,VALLADOLID,SPAIN
关键词
semilinear parabolic problem; nonlocal boundary conditions; finite element Galerkin method; Crank-Nicolson method; extrapolated Crank-Nicolson method; optimal error estimates;
D O I
10.1007/BF02127706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and analyze a Crank-Nicolson finite element Galerkin method and an algebraically-linear extrapolated Crank-Nicolson method for the numerical solution of a semilinear parabolic problem with nonlocal boundary conditions. For each method, optimal error estimates are derived in the maximum norm.
引用
收藏
页码:243 / 262
页数:20
相关论文
共 12 条
[1]  
[Anonymous], 1973, ANAL DISCRETIZATION, DOI DOI 10.1007/978-3-642-65471-8
[2]  
DAY W. A., 1983, Q APPL MATH, V41, P468
[4]  
de Boor C., 1976, Mathematics of Computation, V30, P765, DOI 10.2307/2005397
[5]   OPTIMAL-L-INFINITY ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO SOLUTIONS OF 2-POINT BOUNDARY-VALUE PROBLEMS [J].
DOUGLAS, J ;
DUPONT, T ;
WAHLBIN, L .
MATHEMATICS OF COMPUTATION, 1975, 29 (130) :475-483
[6]   FINITE-DIFFERENCE METHODS FOR A NONLOCAL BOUNDARY-VALUE PROBLEM FOR THE HEAT-EQUATION [J].
EKOLIN, G .
BIT, 1991, 31 (02) :245-261
[8]   MAXIMUM PRINCIPLE UNDER NONLOCAL BOUNDARY-CONDITIONS - REMARKS [J].
KAWOHL, B .
QUARTERLY OF APPLIED MATHEMATICS, 1987, 44 (04) :751-752
[9]  
LIN Y, IN PRESS INT J MATH
[10]   STABILITY AND CONVERGENCE IN NUMERICAL-ANALYSIS .3. LINEAR INVESTIGATION OF NONLINEAR STABILITY [J].
LOPEZMARCOS, JC ;
SANZSERNA, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :71-84