Tridiagonal Companion Matrices and their use for Computing Orthogonal and Nonorthogonal Polynomial Zeros

被引:0
|
作者
Hoelzel, Matthew [1 ]
机构
[1] Univ Bremen, D-28359 Bremen, Germany
来源
2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED) | 2017年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we show that poor conditioning can arise in trivial polynomials, making it difficult to compute zeros with standard companion matrix approaches. Furthermore, using these methods, we show that although the conditioning of an orthogonal polynomial sequence may degrade gracefully, its numerically-computed zeros generally do not. Hence we introduce a tridiagonal form for the companion matrices of orthogonal polynomials whose eigenvalues can be computed more accurately than the standard form. We then introduce a method of obtaining tridiagonal companion matrices for arbitrary polynomials in an attempt to exploit this advantage in the general case.
引用
收藏
页码:364 / 369
页数:6
相关论文
共 50 条
  • [21] The Application of Tridiagonal Matrices in P-polynomial Table Algebras
    Masoumeh Koohestani
    Amir Rahnamai Barghi
    Amirhossein Amiraslani
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1125 - 1129
  • [22] Tridiagonal normal forms for orthogonal similarity classes of symmetric matrices
    Dokovic, DZ
    Zhao, KM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 (1-3 SUPPL.) : 77 - 84
  • [23] On Polynomial Orthogonal of Type I Matrices
    Gajalakshmi, R.
    Ramesh, G.
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 1251 - 1258
  • [24] The Application of Tridiagonal Matrices in P-polynomial Table Algebras
    Koohestani, Masoumeh
    Rahnamai Barghi, Amir
    Amiraslani, Amirhossein
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (04): : 1125 - 1129
  • [25] ORTHOGONAL POLYNOMIAL MATRICES ON UNIT CIRCLE
    DELSARTE, P
    GENIN, YV
    KAMP, YG
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1978, 25 (03): : 149 - 160
  • [26] Computing approximate eigenpairs of symmetric block tridiagonal matrices
    Gansterer, WN
    Ward, RC
    Muller, RP
    Goddard, WA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) : 65 - 85
  • [27] TRIDIAGONAL TOEPLITZ MATRICES AND ORTHOGONAL POLYNOMIALS ON THE UNIT-CIRCLE
    GODOY, E
    MARCELLAN, F
    ORTHOGONAL POLYNOMIALS AND THEIR APPLICATIONS /: PROCEEDINGS OF THE INTERNATIONAL CONGRESS, 1989, 117 : 139 - 146
  • [28] A new family of companion forms of polynomial matrices
    Antoniou, EN
    Vologiannidis, S
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2004, 11 : 78 - 87
  • [29] COMPUTING THE MOMENTS OF THE DENSITY OF ZEROS FOR ORTHOGONAL POLYNOMIALS
    GERMANO, B
    NATALINI, P
    RICCI, PE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 69 - 81
  • [30] AN ASYMPTOTICALLY SUPERIOR ALGORITHM FOR COMPUTING THE CHARACTERISTIC POLYNOMIAL OF A TRIDIAGONAL MATRIX
    KRISHNA, H
    PROCEEDINGS OF THE IEEE, 1988, 76 (10) : 1393 - 1394