Tridiagonal Companion Matrices and their use for Computing Orthogonal and Nonorthogonal Polynomial Zeros

被引:0
|
作者
Hoelzel, Matthew [1 ]
机构
[1] Univ Bremen, D-28359 Bremen, Germany
来源
2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED) | 2017年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we show that poor conditioning can arise in trivial polynomials, making it difficult to compute zeros with standard companion matrix approaches. Furthermore, using these methods, we show that although the conditioning of an orthogonal polynomial sequence may degrade gracefully, its numerically-computed zeros generally do not. Hence we introduce a tridiagonal form for the companion matrices of orthogonal polynomials whose eigenvalues can be computed more accurately than the standard form. We then introduce a method of obtaining tridiagonal companion matrices for arbitrary polynomials in an attempt to exploit this advantage in the general case.
引用
收藏
页码:364 / 369
页数:6
相关论文
共 50 条
  • [1] Annular bounds for the zeros of a polynomial from companion matrices
    Bhunia, Pintu
    Paul, Kallol
    ADVANCES IN OPERATOR THEORY, 2022, 7 (01)
  • [2] Annular bounds for the zeros of a polynomial from companion matrices
    Pintu Bhunia
    Kallol Paul
    Advances in Operator Theory, 2022, 7
  • [3] Computing orthogonal decompositions of block tridiagonal or banded matrices
    Gansterer, WN
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 1, PROCEEDINGS, 2005, 3514 : 25 - 32
  • [4] Orthogonal rational functions and tridiagonal matrices
    Bultheel, A
    González-Vera, P
    Hendriksen, E
    Njåstad, O
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 89 - 97
  • [5] New efficient and accurate bounds for zeros of a polynomial based on similarity of companion complex matrices
    Burqan, Aliaa
    Alsawaftah, Ahmad
    Al-Zhour, Zeyad
    FILOMAT, 2023, 37 (09) : 2961 - 2968
  • [6] Computing the Eigenvectors of Nonsymmetric Tridiagonal Matrices
    Van Dooren, P.
    Laudadio, T.
    Mastronardi, N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (05) : 733 - 749
  • [7] Computing the Eigenvectors of Nonsymmetric Tridiagonal Matrices
    P. Van Dooren
    T. Laudadio
    N. Mastronardi
    Computational Mathematics and Mathematical Physics, 2021, 61 : 733 - 749
  • [8] On the characteristic polynomial, eigenvalues for block tridiagonal matrices
    Ahmed, Driss Aiat Hadj
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1745 - 1756
  • [9] Extraction of infinite zeros of polynomial matrices
    Henrion, D
    León, JR
    Sebek, M
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4221 - 4226
  • [10] Detecting infinite zeros in polynomial matrices
    Henrion, D
    Zúñiga, JC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2005, 52 (11): : 744 - 745