On improving storm surge forecasting using an adjoint optimal technique

被引:16
|
作者
Li, Yineng [1 ]
Peng, Shiqiu [1 ,2 ]
Yan, Jing [1 ]
Xie, Lian [2 ]
机构
[1] Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou 510301, Guangdong, Peoples R China
[2] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Raleigh, NC 27695 USA
基金
中国国家自然科学基金;
关键词
4DVAR; Ajoint model; Wind stress drag coefficient; Initial conditions; Storm surge forecasts; VARIATIONAL DATA ASSIMILATION; WIND-STRESS COEFFICIENTS; DRAG COEFFICIENT; INITIAL CONDITIONS; TROPICAL CYCLONES; SEA-SURFACE; PART I; MODEL; HURRICANE; OCEAN;
D O I
10.1016/j.ocemod.2013.08.009
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial conditions (IC) and the wind stress drag coefficient (C-d) for improving storm surge forecasting. To demonstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a prescription of different error sources and two real data assimilation experiments are performed. Results from both the idealized and real data assimilation experiments show that adjusting IC and C-d simultaneously can achieve much more improvements in storm surge forecasting than adjusting IC or C-d only. A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscillations out of the assimilation window, which can be suppressed by the adjustment of the wind stress when simultaneously adjusting IC and C-d. Therefore, it is recommended to simultaneously adjust IC and C-d to improve storm surge forecasting using an adjoint technique. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 50 条
  • [1] Adjusting the Wind Stress Drag Coefficient in Storm Surge Forecasting Using an Adjoint Technique
    Peng, Shiqiu
    Li, Yineng
    Xie, Lian
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2013, 30 (03) : 590 - 608
  • [2] Correcting the errors in the initial conditions and wind stress in storm surge simulation using an adjoint optimal technique
    Peng, S.-Q.
    Xie, L.
    Pietrafesa, Len J.
    OCEAN MODELLING, 2007, 18 (3-4) : 175 - 193
  • [3] Storm surge forecasting using Kalman filtering
    Heemink, AW
    Bolding, K
    Verlaan, M
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1997, 75 (1B) : 305 - 318
  • [4] Uncertainty in storm surge forecasting
    Lin, Mei-Ying
    Chiou, Ming-Da
    Liu, Wen-Chen
    Chen, Chih-Ying
    Chen, Hao-Yuan
    Taiwan Water Conservancy, 2016, 64 (03): : 23 - 42
  • [5] Improving Short-Range Ensemble Kalman Storm Surge Forecasting Using Robust Adaptive Inflation
    Altaf, M. U.
    Butler, T.
    Luo, X.
    Dawson, C.
    Mayo, T.
    Hoteit, I.
    MONTHLY WEATHER REVIEW, 2013, 141 (08) : 2705 - 2720
  • [6] Impact of using scatterometer and altimeter data on storm surge forecasting
    Bajo, Marco
    De Biasio, Francesco
    Umgiessera, Georg
    Vignudelli, Stefano
    Zecchetto, Stefano
    OCEAN MODELLING, 2017, 113 : 85 - 94
  • [7] Genetic Programming for storm surge forecasting
    Nguyen Thi Hien
    Cao Truong Tran
    Xuan Hoai Nguyen
    Kim, Sooyoul
    Vu Dinh Phai
    Nguyen Ba Thuy
    Ngo Van Manh
    OCEAN ENGINEERING, 2020, 215
  • [8] Short term storm surge forecasting
    Walton, TL
    JOURNAL OF COASTAL RESEARCH, 2005, 21 (03) : 421 - 429
  • [9] RECENT PROGRESS IN STORM SURGE FORECASTING
    Kohno, Nadao
    Dube, Shishir K.
    Entel, Mikhail
    Fakhruddin, S. H. M.
    Greenslade, Diana
    Leroux, Marie-Dominique
    Rhome, Jamie
    Nguyen Ba Thuy
    TROPICAL CYCLONE RESEARCH AND REVIEW, 2018, 7 (02) : 128 - 139
  • [10] RECENT PROGRESS IN STORM SURGE FORECASTING
    NADAO KOHNO
    SHISHIR K.DUBE
    MIKHAIL ENTEL
    S.H.M.FAKHRUDDIN
    DIANA GREENSLADE
    MARIE-DOMINIQUE LEROUX
    JAMIE RHOME
    NGUYEN BA THUY
    Tropical Cyclone Research and Review, 2018, (02) : 128 - 139