Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV

被引:454
|
作者
De Clercq, Erik [1 ]
机构
[1] Katholieke Univ Leuven, Dept Microbiol & Immunol, Rega Inst Med Res, B-3000 Louvain, Belgium
关键词
AIDS; HIV; Nucleoside reverse transcriptase inhibitors (NRTIs); Nucleotide reverse transcriptase inhibitors (NtRTIs); Non-nucleoside reverse transcriptase inhibitors (NNRTIs); Protease inhibitors; Fusion inhibitors; Co-receptor inhibitors; Integrase inhibitors; EXPERIENCED HIV-1-INFECTED PATIENTS; TRANSCRIPTASE INHIBITORS NNRTIS; PLACEBO-CONTROLLED TRIAL; REVERSE-TRANSCRIPTASE; TMC125; ETRAVIRINE; DOUBLE-BLIND; VIRUS; INFECTION; EFFICACY; AIDS;
D O I
10.1016/j.ijantimicag.2008.10.010
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
In 2008, 25 years after the human immunode efficiency virus (HIV) was discovered as the then tentative aetiological agent of acquired immune deficiency syndrome (AIDS), exactly 25 anti-HIV compounds have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs: zidovudine, didanosine, zalcitabine, stavudine, lamivudine, abacavir and emtricitabine); nucleotide reverse transcriptase inhibitors (NtRTIs: tenofovir); non-nucleoside reverse transcriptase inhibitors (NNRTIs: nevirapine, delavirdine, efavirenz and etravirine); protease inhibitors (PIs: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, fosamprenavir, tipranavir and darunavir); cell entry inhibitors [fusion inhibitors (FIs: enfuvirtide) and co-receptor inhibitors (CRIs: maraviroc)]; and integrase inhibitors (INIs: raltegravir). These compounds should be used in drug combination regimens to achieve the highest possible benefit, tolerability and compliance and to diminish the risk of resistance development. (c) 2008 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 50 条
  • [21] Discovery of another anti-HIV protein in the search for the CD8+cell anti-HIV Factor
    Levy, Jay A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (26) : 7888 - 7889
  • [22] THE USE OF A SCANNING PROTON MICROPROBE TO OBSERVE ANTI-HIV DRUGS WITHIN CELLS
    CHOLEWA, M
    LEGGE, GJF
    WEIGOLD, H
    HOLAN, G
    BIRCH, CJ
    LIFE SCIENCES, 1994, 54 (21) : 1607 - 1612
  • [23] Oxidative Stress and Mitochondrial Impairment After Treatment with Anti-HIV Drugs: Clinical Implications
    Blas-Garcia, Ana
    Apostolova, Nadezda
    Esplugues, Juan V.
    CURRENT PHARMACEUTICAL DESIGN, 2011, 17 (36) : 4076 - 4086
  • [24] New anti-HIV drugs: The place of raltegravir
    Katlama, C.
    Tubiana, R.
    Murphy, R.
    ANTIBIOTIQUES, 2009, 11 (01): : 11 - 17
  • [25] 1984-Discovery of the First Anti-HIV Drug, Suramin
    De Clercq, Erik
    VIRUSES-BASEL, 2021, 13 (08):
  • [26] Therapeutic drug monitoring of anti-HIV drugs
    Back, DJ
    Khoo, SH
    Gibbons, SE
    Reynolds, H
    Tjia, JF
    Merry, C
    OPTIMAL DOSE IDENTIFICATION: EXCERTA MEDICA, 2001, 1220 : 145 - 160
  • [27] A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication
    Sever, Belgin
    Otsuka, Masami
    Fujita, Mikako
    Ciftci, Halilibrahim
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [29] Anti-HIV activity of extracts and compounds from algae and cyanobacteria
    Schaeffer, DJ
    Krylov, VS
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2000, 45 (03) : 208 - 227
  • [30] Computer-aided discovery of anti-HIV agents
    Jorgensen, William L.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2016, 24 (20) : 4768 - 4778