Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide

被引:138
|
作者
Rafiee, M. [1 ]
Nitzsche, F. [2 ]
Laliberte, J. [2 ]
Hind, S. [3 ]
Robitaille, F. [1 ]
Labrosse, M. R. [1 ]
机构
[1] Univ Ottawa, Dept Mech Engn, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
[2] Carleton Univ, Dept Mech & Aerosp Engn, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
[3] Natl Res Council Canada, Aerosp Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
关键词
polymer composites; Graphene; Thermal properties; Thermal conductivity; Multiscale composite laminates; MECHANICAL-PROPERTIES; EPOXY-RESIN; FUNCTIONALIZED GRAPHENE; GRAPHITE OXIDE; CONDUCTIVITY; HYBRID; NANOCOMPOSITES; NANOTUBES; FILLERS;
D O I
10.1016/j.compositesb.2018.11.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel manufacturing method based on Vacuum Assisted Resin Transfer Molding (VARTM) was devised to incorporate carbon nanoparticles for the enhancement of thermal properties of multiscale laminates. Several graphene-based nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), graphene nanoplatelets (GNPs) and multi-walled carbon nanotubes (MWCNTs) were used to modify the epoxy matrix and the surface of glass fibers. The thermal, rheological and morphological properties of the resulting glass fiber-reinforced multiscale composites were investigated. The thermal properties of the epoxy/nanoparticle composites were studied through thermal conductivity measurements, differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). The thermal characterization results showed that the introduction of GNPs, GO, rGO, and MWCNTs enhanced thermal conductivity. Compared with the neat epoxy/fiberglass composite control results, improvement in thermal conductivity of fiberglass/epoxy modified with MWCNTs 0.3%, GNPs 1%, GO 2% and rGO 0.042% were 8.8%, 12.6%, 8.2% and 4.1%, respectively. It was concluded that for the same volume fraction of nanoparticles, the thermal conductivity improvement in graphene nanoplatelets-modified composites is more pronounced compared with other nanoparticles. A better dispersion of nanoparticles and a better interfacial interaction between nanoparticles and epoxy are essential in enhancing the thermal conductivity of nanocomposite materials.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Significant Fatigue Life Enhancement in Multiscale Doubly-Modified Fiber/Epoxy Nanocomposites with Graphene Nanoplatelets and Reduced-Graphene Oxide
    Rafiee, Mohammad
    Rad, Somayeh Hosseini
    Nitzsche, Fred
    Laliberte, Jeremy
    Labrosse, Michel R.
    POLYMERS, 2020, 12 (09)
  • [2] Investigation of Mechanical Properties of Graphene and Reduced Graphene Oxide Reinforced Epoxy Matrix Composites
    Topal, E.
    Parmak, E. Devrim Sam
    Uzunsoy, D.
    Cakir, O. Colak
    JOURNAL OF TESTING AND EVALUATION, 2017, 45 (04) : 1182 - 1191
  • [3] Comparison of the tensile and flexural properties of epoxy nanocomposites reinforced by graphene oxide and reduced graphene oxide
    Kumar, Amit
    Singh, Subhav
    Varshney, Deekshant
    Sreenivasa, S.
    Beemkumar, N.
    Karthikeyan, A.
    POLYMER COMPOSITES, 2025,
  • [4] Enhanced Thermal and Electrical Properties of Epoxy Composites Reinforced With Graphene Nanoplatelets
    Wang, Yi
    Yu, Jinhong
    Dai, Wen
    Song, Yingze
    Wang, Dong
    Zeng, Liming
    Jiang, Nan
    POLYMER COMPOSITES, 2015, 36 (03) : 556 - 565
  • [5] Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets
    Mahanta, Nayandeep K.
    Abramson, Alexis R.
    2012 13TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS (ITHERM), 2012, : 1 - 6
  • [6] In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties
    Ganiu B. Olowojoba
    Salvador Eslava
    Eduardo S. Gutierrez
    Anthony J. Kinloch
    Cecilia Mattevi
    Victoria G. Rocha
    Ambrose C. Taylor
    Applied Nanoscience, 2016, 6 : 1015 - 1022
  • [7] In situ thermally reduced graphene oxide/epoxy composites: thermal and mechanical properties
    Olowojoba, Ganiu B.
    Eslava, Salvador
    Gutierrez, Eduardo S.
    Kinloch, Anthony J.
    Mattevi, Cecilia
    Rocha, Victoria G.
    Taylor, Ambrose C.
    APPLIED NANOSCIENCE, 2016, 6 (07) : 1015 - 1022
  • [8] Thermophysical properties enhancement of octadecane using reduced graphene oxide and graphene oxide nanoplatelets
    Zeitoun, Marwa
    Adel, Marwa
    Abulfotouh, Fuad
    Ebrahim, Shaker
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [9] Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide
    Sharmila, T. K. Bindu
    Antony, Jolly V.
    Jayakrishnan, M. P.
    Beegum, P. M. Sabura
    Thachil, Eby Thomas
    MATERIALS & DESIGN, 2016, 90 : 66 - 75
  • [10] Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets
    Shen, Jianfeng
    Hu, Yizhe
    Shi, Min
    Lu, Xin
    Qin, Chen
    Li, Chen
    Ye, Mingxin
    CHEMISTRY OF MATERIALS, 2009, 21 (15) : 3514 - 3520