Decrease of the mean of the quasi-random integration error

被引:1
|
作者
Ermakov, Sergej M. [1 ]
Leora, Svetlana N. [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Quasi-random sequences; Quasi-Monte Carlo method; Randomization;
D O I
10.1080/03610918.2019.1627370
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article is devoted to the study of the behavior of the quasi-random integration remainder in the calculation of high-dimensional integrals. As noted in the previous work of the authors, the asymptotic behavior of its decrease, determined by the Koksma-Hlawka inequality, can be used only with a very large number of integration nodes N, which cannot be implemented on modern computers. The article introduces the concept of a mean order of decreasing remainder, which makes it possible to judge its properties with the N values available for realization and to compare various pseudo-random sequences. A number of numerical examples are given. In all cases, it turned out that the Sobol' sequences in the sense of this criterion are somewhat better than the Holton sequences.
引用
收藏
页码:3581 / 3589
页数:9
相关论文
共 50 条
  • [41] Large hole in quasi-random graphs
    Polcyn, Joanna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [42] Cooperative phenomena in a quasi-random antiferromagnet
    Todate, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (01) : 198 - 205
  • [43] QUASI-RANDOM ASSIGNMENT CAN BE AS CONVINCING AS RANDOM ASSIGNMENT
    BAER, DM
    AMERICAN JOURNAL ON MENTAL RETARDATION, 1993, 97 (04): : 373 - 375
  • [44] On randomization of Halton quasi-random sequences
    Ermakov S.M.
    Vestnik St. Petersburg University, Mathematics, 2017, 50 (4) : 337 - 341
  • [45] PSEUDORANDOM NUMBERS AND QUASI-RANDOM POINTS
    NIEDERREITER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T648 - T652
  • [46] Remarks on randomization of quasi-random numbers
    Ermakov, Sergej M.
    Leora, Svetlana N.
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (02): : 139 - 145
  • [47] Quasi-random nonlinear scale space
    Mishra, Akshaya
    Wong, Alexander
    Clausi, David A.
    Fieguth, Paul W.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1850 - 1859
  • [48] QUASI-RANDOM SEQUENCES BY POWER RESIDUES
    CENACCHI, G
    DEMATTEI.A
    NUMERISCHE MATHEMATIK, 1972, 20 (01) : 54 - &
  • [49] Quasi-random sampling importance resampling
    Pérez, CJ
    Martín, J
    Rufo, MJ
    Rojano, C
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (01) : 97 - 112
  • [50] QUASI-RANDOM MODEL OF BAND ABSORPTION
    WYATT, PJ
    PLASS, GN
    STULL, VR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1962, 52 (11) : 1209 - &