Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination

被引:21
作者
Itoi, Takao [1 ]
Sugimoto, Masahiro [2 ]
Umeda, Junko [1 ]
Sofuni, Atsushi [1 ]
Tsuchiya, Takayoshi [1 ]
Tsuji, Shujiro [1 ]
Tanaka, Reina [1 ]
Tonozuka, Ryosuke [1 ]
Honjo, Mitsuyoshi [1 ]
Moriyasu, Fuminori [1 ]
Kasuya, Kazuhiko [3 ]
Nagakawa, Yuichi [3 ]
Abe, Yuta [4 ]
Takano, Kimihiro [4 ]
Kawachi, Shigeyuki [4 ]
Shimazu, Motohide [4 ]
Soga, Tomoyoshi [2 ]
Tomita, Masaru [2 ]
Sunamura, Makoto [4 ]
机构
[1] Tokyo Med Univ, Div Gastroenterol & Hepatol, Shinjuku Ku, Tokyo 1600023, Japan
[2] Keio Univ, Inst Adv Biosci, Tsuruoka, Yamagata 9970052, Japan
[3] Tokyo Med Univ, Dept Surg 3, Shinjuku Ku, Tokyo 1600023, Japan
[4] Tokyo Med Univ, Dept Surg 4, Hachioji Med Ctr, Hachioji, Tokyo 1930998, Japan
关键词
pancreatic cancer; biliary tract cancers; metabolomics; capillary electrophoresis mass spectrometry; NUCLEAR-MAGNETIC-RESONANCE; DIAGNOSIS; SPECTROSCOPY; BIOMARKERS; MORTALITY; CA-19-9; UTILITY; LESIONS; CA19-9; MARKER;
D O I
10.3390/ijms18040767
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study evaluated the clinical use of serum metabolomics to discriminate malignant cancers including pancreatic cancer (PC) from malignant diseases, such as biliary tract cancer (BTC), intraductal papillary mucinous carcinoma (IPMC), and various benign pancreaticobiliary diseases. Capillary electrophoresis-mass spectrometry was used to analyze charged metabolites. We repeatedly analyzed serum samples (n = 41) of different storage durations to identify metabolites showing high quantitative reproducibility, and subsequently analyzed all samples (n = 140). Overall, 189 metabolites were quantified and 66 metabolites had a 20% coefficient of variation and, of these, 24 metabolites showed significant differences among control, benign, and malignant groups (p < 0.05; Steel-Dwass test). Four multiple logistic regression models (MLR) were developed and one MLR model clearly discriminated all disease patients from healthy controls with an area under receiver operating characteristic curve (AUC) of 0.970 (95% confidential interval (CI), 0.946-0.994, p < 0.0001). Another model to discriminate PC from BTC and IPMC yielded AUC = 0.831 (95% CI, 0.650-1.01, p = 0.0020) with higher accuracy compared with tumor markers including carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), pancreatic cancer-associated antigen (DUPAN2) and s-pancreas-1 antigen (SPAN1). Changes in metabolomic profiles might be used to screen for malignant cancers as well as to differentiate between PC and other malignant diseases.
引用
收藏
页数:13
相关论文
共 41 条
[1]   Serum Metabolite Profiling for the Detection of Pancreatic Cancer: Results of a Large Independent Validation Study [J].
Akita, Hirofumi ;
Ritchie, Shawn A. ;
Takemasa, Ichiro ;
Eguchi, Hidetoshi ;
Pastural, Elodie ;
Jin, Wei ;
Yamazaki, Yasuyo ;
Goodenowe, Dayan B. ;
Nagano, Hiroaki ;
Monden, Morito ;
Mori, Masaki ;
Doki, Yuichiro .
PANCREAS, 2016, 45 (10) :1418-1423
[2]  
[Anonymous], 2005, DATA MINING
[3]   Feasibility of Identifying Pancreatic Cancer Based on Serum Metabolomics [J].
Bathe, Oliver F. ;
Shaykhutdinov, Rustem ;
Kopciuk, Karen ;
Weljie, Aalim M. ;
Mckay, Andrew ;
Sutherland, Francis R. ;
Dixon, Elijah ;
Dunse, Nicole ;
Sotiropoulos, Dina ;
Vogel, Hans J. .
CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2011, 20 (01) :140-147
[4]   Frequent Detection of Pancreatic Lesions in Asymptomatic High-Risk Individuals [J].
Canto, Marcia Irene ;
Hruban, Ralph H. ;
Fishman, Elliot K. ;
Kamel, Ihab R. ;
Schulick, Richard ;
Zhang, Zhe ;
Topazian, Mark ;
Takahashi, Naoki ;
Fletcher, Joel ;
Petersen, Gloria ;
Klein, Alison P. ;
Axilbund, Jennifer ;
Griffin, Constance ;
Syngal, Sapna ;
Saltzman, John R. ;
Mortele, Koenraad J. ;
Lee, Jeffrey ;
Tamm, Eric ;
Vikram, Raghunandan ;
Bhosale, Priya ;
Margolis, Daniel ;
Farrell, James ;
Goggins, Michael .
GASTROENTEROLOGY, 2012, 142 (04) :796-804
[5]  
Di Gangi IM, 2016, ONCOTARGET, V7, P5815, DOI 10.18632/oncotarget.6808
[6]   Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-upaEuro [J].
Ducreux, M. ;
Cuhna, A. Sa. ;
Caramella, C. ;
Hollebecque, A. ;
Burtin, P. ;
Goere, D. ;
Seufferlein, T. ;
Haustermans, K. ;
Van Laethem, J. L. ;
Conroy, T. ;
Arnold, D. .
ANNALS OF ONCOLOGY, 2015, 26 :V56-V68
[7]   Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis [J].
Fang, Fang ;
He, Xinhong ;
Deng, Huiwen ;
Chen, Qun ;
Lu, Jianping ;
Spraul, Manfred ;
Yu, Yihua .
CANCER SCIENCE, 2007, 98 (11) :1678-1682
[8]   Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer [J].
Goonetilleke, K. S. ;
Siriwardena, A. K. .
EJSO, 2007, 33 (03) :266-270
[9]   Effects of processing and storage conditions on charged metabolomic profiles in blood [J].
Hirayama, Akiyoshi ;
Sugimoto, Masahiro ;
Suzuki, Asako ;
Hatakeyama, Yoko ;
Enomoto, Ayame ;
Harada, Sei ;
Soga, Tomoyoshi ;
Tomita, Masaru ;
Takebayashi, Toru .
ELECTROPHORESIS, 2015, 36 (18) :2148-2155
[10]   Metabolic phenotyping in health and disease [J].
Holmes, Elaine ;
Wilson, Ian D. ;
Nicholson, Jeremy K. .
CELL, 2008, 134 (05) :714-717