Reduced-order observer design with unknown input for fractional order descriptor nonlinear systems

被引:7
作者
Zhan, Tao [1 ]
Ma, Shuping [1 ]
机构
[1] Shandong Univ, Sch Math, 27 Shanda Nanlu, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional order; descriptor nonlinear system; Lyapunov direct method; reduced-order observer; unknown input; ROBUST-CONTROL; IDENTIFICATION; STABILIZATION;
D O I
10.1177/0142331219834990
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the observer design issues for the quadratic inner-bounded nonlinear descriptor fractional order systems. Considering the disturbances or inaccessible partial inputs, the order reduction of observer with unknown input is firstly implemented for effectively estimating the system state vectors. Then, for the purpose of the system conservatism reduction, the matrix F perpendicular to and the matrix generalized inverse technique are applied to design the reduced-order observer, which can deal with unknown input with less restrictions of coefficient matrices. By using fractional order Lyapunov direct method, sufficient conditions can be obtained to ensure the existence of the designed observer. Finally, a fractional order electrical circuit is applied to demonstrate the applicability of the proposed approach.
引用
收藏
页码:3705 / 3713
页数:9
相关论文
共 38 条
  • [1] Lyapunov functions for fractional order systems
    Aguila-Camacho, Norelys
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2951 - 2957
  • [2] Observer-based robust control of one-sided Lipschitz nonlinear systems
    Ahmad, Sohaira
    Rehan, Muhammad
    Hong, Keum-Shik
    [J]. ISA TRANSACTIONS, 2016, 65 : 230 - 240
  • [3] Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality
    Ahn, Hyo-Sung
    Chen, YangQuan
    Podlubny, Igor
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) : 27 - 34
  • [4] Bettayeb M, 2006, IFAC P VOLUMES, V39, P493
  • [5] Fractional order models for system identification of thermal dynamics of buildings
    Chen, Lin
    Basu, Biswajit
    McCabe, David
    [J]. ENERGY AND BUILDINGS, 2016, 133 : 381 - 388
  • [6] Robust controllability of interval fractional order linear time invariant systems
    Chen, YangQuan
    Ahn, Hyo-Sung
    Xue, Dingyu
    [J]. SIGNAL PROCESSING, 2006, 86 (10) : 2794 - 2802
  • [7] Dai L., 1989, SINGULAR CONTROL SYS, DOI DOI 10.1007/BFB0002475
  • [8] Modulating function-based identification for fractional order systems
    Dai, Yi
    Wei, Yiheng
    Hu, Yangsheng
    Wang, Yong
    [J]. NEUROCOMPUTING, 2016, 173 : 1959 - 1966
  • [9] Observers for a Class of Nonlinear Singular Systems
    Darouach, M.
    Boutat-Baddas, L.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (11) : 2627 - 2633
  • [10] Stability region analysis in Smith predictor configurations using a PI controller
    Deniz, Furkan Nur
    Tan, Nusret
    Hamamci, Serdar Ethem
    Kaya, Ibrahim
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2015, 37 (05) : 606 - 614