Thermoreversible Siloxane Networks: Soft Biomaterials with Widely Tunable Viscoelasticity

被引:35
作者
Meng, Yuan [1 ]
Xu, Weijing [1 ]
Newman, Maureen R. [2 ]
Benoit, Danielle S. W. [2 ]
Anthamatten, Mitchell [1 ]
机构
[1] Univ Rochester, Dept Chem Engn, 4311 Wegmans Hall, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Biomed Engn, 308 Robert B Goergen Hall, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
poly(dimethyl siloxane); reversible polymer networks; shape-memory polymer; stress relaxation; ureidopyrimidinone; THERMOPLASTIC ELASTOMERS; MECHANICAL-PROPERTIES; POLYMER NETWORKS; DYNAMICS; BEHAVIOR; STACKING; MELTS; END;
D O I
10.1002/adfm.201903721
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Polysiloxane elastomers represent a widely utilized soft material with excellent rubber-like elasticity, biocompatibility, and biodurability; however, there is a lack of an effective and straightforward approach to manipulate the material's viscoelastic response. A facile hydrosilylation reaction is employed to integrate ureidopyrimidinone hydrogen-bonding side-groups into linear and crosslinked siloxane polymers to achieve biocompatible soft materials with a highly tunable viscoelastic relaxation timescale. Stacking of H-bonded moieties is avoided in the designed macromolecular architectures with tight, side-groups substituents. The obtained siloxane network features the presence of both covalent crosslinks and truly thermoreversible crosslinks, and can be formulated across a broad material design space including elastic solids, recoverable viscoelastic solids, and viscous liquids. The elastomers exhibit unique temperature-dependent shape-memory capability and show good cytocompatibility. Importantly, a deformed material's shape-recovery occurs regardless of external triggering, and through manipulation of network formulations, the shape-recovery timescale can be easily tuned from seconds to days, opening new possibilities for biomedical, healthcare, and soft material applications.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Hydrogen Bonding in Supramolecular Polymer Networks: Glasses, Melts, and Elastomers [J].
Anthamatten, Mitchell .
SUPRAMOLECULAR POLYMER NETWORKS AND GELS, 2015, 268 :47-99
[2]   Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts [J].
Bauer, Aline ;
Gu, Luo ;
Kwee, Brian ;
Li, Weiwei Aileen ;
Dellacherie, Maxence ;
Celiz, Adam D. ;
Mooney, David J. .
ACTA BIOMATERIALIA, 2017, 62 :82-90
[3]   DYNAMICS OF REVERSIBLY CROSS-LINKED CHAINS [J].
BAXANDALL, LG .
MACROMOLECULES, 1989, 22 (04) :1982-1988
[4]   Self-assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers [J].
Botterhuis, Nicole E. ;
van Beek, D. J. M. ;
van Gemert, Gaby M. L. ;
Bosman, Anton W. ;
Sijbesma, Rint P. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (12) :3877-3885
[5]   Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water [J].
Brunsveld, L ;
Vekemans, JAJM ;
Hirschberg, JHKK ;
Sijbesma, RP ;
Meijer, EW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (08) :4977-4982
[6]   Supramolecular polymers [J].
Brunsveld, L ;
Folmer, BJB ;
Meijer, EW ;
Sijbesma, RP .
CHEMICAL REVIEWS, 2001, 101 (12) :4071-4097
[7]   Soft Poly(dimethylsiloxane) Elastomers from Architecture-Driven Entanglement Free Design [J].
Cai, Li-Heng ;
Kodger, Thomas E. ;
Guerra, Rodrigo E. ;
Pegoraro, Adrian F. ;
Rubinstein, Michael ;
Weitz, David A. .
ADVANCED MATERIALS, 2015, 27 (35) :5132-5140
[8]   The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells [J].
Cameron, Andrew R. ;
Frith, Jessica E. ;
Gomez, Guillermo A. ;
Yap, Alpha S. ;
Cooper-White, Justin J. .
BIOMATERIALS, 2014, 35 (06) :1857-1868
[9]   The influence of substrate creep on mesenchymal stem cell behaviour and phenotype [J].
Cameron, Andrew R. ;
Frith, Jessica E. ;
Cooper-White, Justin J. .
BIOMATERIALS, 2011, 32 (26) :5979-5993
[10]  
Chaudhuri O, 2016, NAT MATER, V15, P326, DOI [10.1038/NMAT4489, 10.1038/nmat4489]