The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth

被引:28
作者
Benyaiche, Allami [1 ]
Harjulehto, Petteri [2 ]
Hasto, Peter [2 ]
Karppinen, Arttu [2 ]
机构
[1] Ibn Tofail Univ, Dept Math, Kenitra, Morocco
[2] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
关键词
Nonstandard growth; Supersolution; Harnack's inequality; Musielak-Orlicz spaces; Variable exponent; Double phase; NONLINEAR ELLIPTIC-EQUATIONS; DOUBLE-PHASE PROBLEMS; RENORMALIZED SOLUTIONS; HOLDER CONTINUITY; REGULARITY; FUNCTIONALS; MINIMIZERS; SPACES;
D O I
10.1016/j.jde.2020.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study unbounded weak supersolutions of elliptic partial differential equations with generalized Orlicz (Musielak-Orlicz) growth. We show that they satisfy the weak Harnack inequality with optimal exponent provided that they belong to a suitable Lebesgue or Sobolev space. Furthermore, we establish the sharpness of our central assumptions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:790 / 814
页数:25
相关论文
共 49 条
[1]  
Alkhutov YA, 1997, DIFF EQUAT+, V33, P1653
[2]   A Harnack inequality in Orlicz-Sobolev spaces [J].
Arriagad, Waldo ;
Huentutripay, Jorge .
STUDIA MATHEMATICA, 2018, 243 (02) :117-137
[3]   New Examples on Lavrentiev Gap Using Fractals [J].
Balci, Anna Kh. ;
Diening, Lars ;
Surnachev, Mikhail .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
[4]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[5]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[6]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[7]   Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces [J].
Benyaiche, Allami ;
Khlifi, Ismail .
POTENTIAL ANALYSIS, 2020, 53 (02) :631-643
[8]   REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS [J].
Byun, Sun-Sig ;
Oh, Jehan .
ANALYSIS & PDE, 2020, 13 (05) :1269-1300
[9]   Global gradient estimates for the borderline case of double phase problems with BMO coefficients in nonsmooth domains [J].
Byun, Sun-Sig ;
Oh, Jehan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) :1643-1693
[10]   A modular variable Orlicz inequality for the local maximal operator [J].
Capone, Claudia ;
Cruz-Uribe, David ;
Fiorenza, Alberto .
GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (02) :201-206